This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157523 #9 Jan 23 2022 07:37:02 %S A157523 1,1,1,1,5,1,1,15,15,1,1,37,95,37,1,1,82,463,463,82,1,1,173,1910,3799, %T A157523 1910,173,1,1,356,7096,25672,25672,7096,356,1,1,723,24645,150994, %U A157523 260519,150994,24645,723,1,1,1458,81499,804875,2259903,2259903,804875,81499,1458,1 %N A157523 Triangle T(n, k, q) = (q*(n-k) +1)*T(n-1, k-1, q) + (q*k+1)*T(n-1, k, q) + q*A157522(n, k)*T(n-2, k-1, q), with T(n, 0, q) = T(n, n, q) = 1 and q = 1, read by rows. %H A157523 G. C. Greubel, <a href="/A157523/b157523.txt">Rows n = 0..50 of the triangle, flattened</a> %F A157523 T(n, k, q) = (q*(n-k) +1)*T(n-1, k-1, q) + (q*k+1)*T(n-1, k, q) + q*A157522(n, k)*T(n-2, k-1, q), with T(n, 0, q) = T(n, n, q) = 1 and q = 1. %e A157523 Triangle begins as: %e A157523 1; %e A157523 1, 1; %e A157523 1, 5, 1; %e A157523 1, 15, 15, 1; %e A157523 1, 37, 95, 37, 1; %e A157523 1, 82, 463, 463, 82, 1; %e A157523 1, 173, 1910, 3799, 1910, 173, 1; %e A157523 1, 356, 7096, 25672, 25672, 7096, 356, 1; %e A157523 1, 723, 24645, 150994, 260519, 150994, 24645, 723, 1; %e A157523 1, 1458, 81499, 804875, 2259903, 2259903, 804875, 81499, 1458, 1; %t A157523 f[n_, k_]= 1 + If[k<=Floor[n/4], k, If[Floor[n/4]<k<=Floor[n/2], Floor[n/2]-k, If[Floor[n/2]<k<=Floor[3*n/4], k-Floor[n/2], n-k]]]; %t A157523 A157522[n_, k_]:= f[n,k] +f[n,n-k] -1; %t A157523 T[n_, k_, q_]:= T[n,k,q]= If[k==0 || k==n, 1, (q*(n-k) +1)*T[n-1,k-1,q] + (q*k+1)*T[n-1, k, q] + q*A157522[n, k]*T[n-2,k-1,q]]; %t A157523 Table[T[n,k,1], {n,0,10}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Jan 23 2022 *) %o A157523 (Sage) %o A157523 def f(n, k): %o A157523 if (k <= (n//4)): return k+1 %o A157523 elif ((n//4) < k <= (n//2)): return (n//2)-k+1 %o A157523 elif ((n//2) < k <= (3*n//4)): return k+1-(n//2) %o A157523 else: return n-k+1 %o A157523 def A157522(n,k): return f(n,k) + f(n,n-k) - 1 %o A157523 @CachedFunction %o A157523 def T(n, k, q): %o A157523 if (k==0 or k==n): return 1 %o A157523 else: return (q*(n-k) +1)*T(n-1, k-1, q) + (q*k+1)*T(n-1, k, q) + q*A157522(n, k)*T(n-2, k-1, q); %o A157523 flatten([[T(n,k,1) for k in (0..n)] for n in (0..15)]) # _G. C. Greubel_, Jan 23 2022 %Y A157523 Cf. A007318 (q=0), this sequence (q=1). %Y A157523 Cf. A157522. %K A157523 nonn,tabl %O A157523 0,5 %A A157523 _Roger L. Bagula_, Mar 02 2009 %E A157523 Edited by _G. C. Greubel_, Jan 23 2022