This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157531 #12 Jan 12 2023 06:16:25 %S A157531 2,3,3,7,10,7,21,29,29,21,71,86,106,86,71,253,277,352,352,277,253,925, %T A157531 960,1149,1324,1149,960,925,3433,3481,3873,4657,4657,3873,3481,3433, %U A157531 12871,12934,13654,16006,17770,16006,13654,12934,12871,48621,48701,49916,55676,64496,64496,55676,49916,48701,48621 %N A157531 Triangle T(n, k) = binomial(2*n, n) + binomial(n, k)^2, read by rows. %H A157531 G. C. Greubel, <a href="/A157531/b157531.txt">Rows n = 0..50 of the triangle, flattened</a> %F A157531 T(n, k) = Sum_{j=0..k} binomial(n,j)*binomial(n,n-j) + Sum_{j=0..n-k} binomial(n,j)*binomial(n,n-j). %F A157531 From _G. C. Greubel_, Dec 09 2021: (Start) %F A157531 Sum_{k=0..n} T(n, k) = (n+2)*binomial(2*n, n). %F A157531 T(n, k) = T(n, n-k). %F A157531 T(n, 0) = 1 + binomial(2*n, n) = A323230(n+1). %F A157531 T(2*n, n) = 2*A036910(n). (End) %e A157531 Triangle begins as: %e A157531 2; %e A157531 3, 3; %e A157531 7, 10, 7; %e A157531 21, 29, 29, 21; %e A157531 71, 86, 106, 86, 71; %e A157531 253, 277, 352, 352, 277, 253; %e A157531 925, 960, 1149, 1324, 1149, 960, 925; %e A157531 3433, 3481, 3873, 4657, 4657, 3873, 3481, 3433; %e A157531 12871, 12934, 13654, 16006, 17770, 16006, 13654, 12934, 12871; %e A157531 48621, 48701, 49916, 55676, 64496, 64496, 55676, 49916, 48701, 48621; %p A157531 A157531 := proc(n,k) %p A157531 binomial(2*n,n)+binomial(n,k)^2 ; %p A157531 end proc: %p A157531 seq(seq(A157531(n,k),k=0..n),n=0..12) ; # _R. J. Mathar_, Jan 12 2023 %t A157531 T[n_, k_]:= T[n,k]= Sum[Binomial[n, j]^2, {j,0,k}] + Sum[Binomial[n, j]^2, {j, 0, n-k}]; %t A157531 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten %o A157531 (Magma) [Binomial(2*n, n) + Binomial(n, k)^2: k in [0..n], n in [0..12]]; // _G. C. Greubel_, Dec 09 2021 %o A157531 (Sage) flatten([[binomial(2*n, n) + binomial(n, k)^2 for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Dec 09 2021 %Y A157531 Cf. A000984, A036910, A323230. %K A157531 nonn,tabl %O A157531 0,1 %A A157531 _Roger L. Bagula_, Mar 02 2009 %E A157531 Edited by _G. C. Greubel_, Dec 09 2021