This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157634 #13 Sep 08 2022 08:45:42 %S A157634 1,1,1,1,30,1,1,210,210,1,1,780,960,780,1,1,2100,2850,2850,2100,1,1, %T A157634 4650,6720,7290,6720,4650,1,1,9030,13650,15540,15540,13650,9030,1,1, %U A157634 15960,24960,29400,30720,29400,24960,15960,1,1,26280,42210,51030,54900,54900,51030,42210,26280,1 %N A157634 Triangle T(n, k) = 1 if k = 0 or k = n, otherwise n^5 - k^5 - (n-k)^5, read by rows. %H A157634 G. C. Greubel, <a href="/A157634/b157634.txt">Rows n = 0..50 of the triangle, flattened</a> %F A157634 T(n, k) = 1 if k = 0 or k = n, otherwise 5*n*k*(n-k)*(n^2 -n*k +k^2). %F A157634 T(n, n-k) = T(n, k). %F A157634 Sum_{k=0..n} T(n, k) = 2 - [n=0] + 30*A006858(n). %F A157634 From _G. C. Greubel_, Dec 13 2021: (Start) %F A157634 T(n, 1) = [n<2] + 30*A006325(n). %F A157634 T(2*n, n) = [n=0] + 30*A000584(n). (End) %e A157634 Triangle begins as: %e A157634 1; %e A157634 1, 1; %e A157634 1, 30, 1; %e A157634 1, 210, 210, 1; %e A157634 1, 780, 960, 780, 1; %e A157634 1, 2100, 2850, 2850, 2100, 1; %e A157634 1, 4650, 6720, 7290, 6720, 4650, 1; %e A157634 1, 9030, 13650, 15540, 15540, 13650, 9030, 1; %e A157634 1, 15960, 24960, 29400, 30720, 29400, 24960, 15960, 1; %e A157634 1, 26280, 42210, 51030, 54900, 54900, 51030, 42210, 26280, 1; %e A157634 1, 40950, 67200, 82950, 91200, 93750, 91200, 82950, 67200, 40950, 1; %t A157634 T[n_, k_]:= If[n*k*(n-k)==0, 1, n^5 - (k^5 + (n-k)^5)]; %t A157634 Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten %o A157634 (Magma) %o A157634 A157634:= func< n,k | k eq 0 or k eq n select 1 else n^5 - (k^5 + (n-k)^5) >; %o A157634 [A157634(n, k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Dec 13 2021 %o A157634 (Sage) %o A157634 def A157634(n,k): return 1 if (k==0 or k==n) else n^5 - (k^5 + (n-k)^5) %o A157634 flatten([[A157634(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Dec 13 2021 %Y A157634 Cf. A000584, A006325, A006858. %K A157634 nonn,tabl,easy %O A157634 0,5 %A A157634 _Roger L. Bagula_, Mar 03 2009