This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157636 #10 Sep 08 2022 08:45:42 %S A157636 1,1,1,1,1,1,1,3,3,1,1,6,8,6,1,1,10,15,15,10,1,1,15,24,27,24,15,1,1, %T A157636 21,35,42,42,35,21,1,1,28,48,60,64,60,48,28,1,1,36,63,81,90,90,81,63, %U A157636 36,1,1,45,80,105,120,125,120,105,80,45,1 %N A157636 Triangle read by rows: T(n, k) = 1 if k=0 or k=n, otherwise = n*k*(n-k)/2. %H A157636 G. C. Greubel, <a href="/A157636/b157636.txt">Rows n = 0..50 of the triangle, flattened</a> %F A157636 T(n, k) = 1 if k=0 or k=n, otherwise = n*k*(n-k)/2. %F A157636 Sum_{k=0..n} T(n, k) = 2 + n^2*(n^2 - 1)/12 = 2 + A002415(n) if n>0. %F A157636 From _G. C. Greubel_, Dec 13 2021: (Start) %F A157636 T(n, k) = T(n, n-k). %F A157636 T(n, 1) = [n<2] + binomial(n, 2). %F A157636 T(n, 2) = A132411(n-1), for n >= 2. %F A157636 T(2*n, n) = [n=0] + A000578(n). (End) %e A157636 Triangle begins as: %e A157636 1; %e A157636 1, 1; %e A157636 1, 1, 1; %e A157636 1, 3, 3, 1; %e A157636 1, 6, 8, 6, 1; %e A157636 1, 10, 15, 15, 10, 1; %e A157636 1, 15, 24, 27, 24, 15, 1; %e A157636 1, 21, 35, 42, 42, 35, 21, 1; %e A157636 1, 28, 48, 60, 64, 60, 48, 28, 1; %e A157636 1, 36, 63, 81, 90, 90, 81, 63, 36, 1; %e A157636 1, 45, 80, 105, 120, 125, 120, 105, 80, 45, 1; %t A157636 T[n_, k_] = If[n*k*(n-k)==0, 1, n*k*(n-k)/2]; %t A157636 Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten %o A157636 (Magma) A157636:= func< n,k | k eq 0 or k eq n select 1 else n*k*(n-k)/2 >; %o A157636 [A157636(n,k): k in [0..n], n in [0..15]]; // _G. C. Greubel_, Dec 13 2021 %o A157636 (Sage) %o A157636 def A157636(n,k): return 1 if (k==0 or k==n) else n*k*(n-k)/2 %o A157636 flatten([[A157636(n,k) for k in (0..n)] for n in (0..15)]) # _G. C. Greubel_, Dec 13 2021 %Y A157636 Cf. A000578, A002415, A107985, A132411. %K A157636 nonn,tabl,easy %O A157636 0,8 %A A157636 _Roger L. Bagula_, Mar 03 2009