cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157706 The z^2 coefficients of the polynomials in the GF1 denominators of A156921.

Original entry on oeis.org

7, 75, 385, 1365, 3850, 9282, 19950, 39270, 72105, 125125, 207207, 329875, 507780, 759220, 1106700, 1577532, 2204475, 3026415, 4089085, 5445825, 7158382, 9297750, 11945050, 15192450, 19144125, 23917257
Offset: 2

Views

Author

Johannes W. Meijer, Mar 07 2009

Keywords

Comments

See A157702 for background information.

Crossrefs

Programs

  • Maple
    nmax:=27; for n from 0 to nmax do fz(n):= product( (1-(2*m-1)*z)^(n+1-m) , m=1..n); c(n):= coeff(fz(n),z,2); end do: a:=n-> c(n): seq(a(n), n=2..nmax);

Formula

a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7)
a(n) = 1/18*n^6+1/6*n^5+1/72*n^4-1/4*n^3-5/72*n^2+1/12*n
G.f.: (7+26*z+7*z^2)/(1-z)^7