A157706 The z^2 coefficients of the polynomials in the GF1 denominators of A156921.
7, 75, 385, 1365, 3850, 9282, 19950, 39270, 72105, 125125, 207207, 329875, 507780, 759220, 1106700, 1577532, 2204475, 3026415, 4089085, 5445825, 7158382, 9297750, 11945050, 15192450, 19144125, 23917257
Offset: 2
Programs
-
Maple
nmax:=27; for n from 0 to nmax do fz(n):= product( (1-(2*m-1)*z)^(n+1-m) , m=1..n); c(n):= coeff(fz(n),z,2); end do: a:=n-> c(n): seq(a(n), n=2..nmax);
Formula
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7)
a(n) = 1/18*n^6+1/6*n^5+1/72*n^4-1/4*n^3-5/72*n^2+1/12*n
G.f.: (7+26*z+7*z^2)/(1-z)^7
Comments