A157707 The z^2 coefficients of the polynomials in the GF3 denominators of A156927 divided by 2.
16, 205, 1165, 4415, 13055, 32606, 72030, 144930, 270930, 477235, 800371, 1288105, 2001545, 3017420, 4430540, 6356436, 8934180, 12329385, 16737385, 22386595, 29542051, 38509130, 49637450, 63324950
Offset: 1
Programs
-
Maple
nmax:=24; for n from 0 to nmax do fz(n):=product((1-(k+1)*z)^(1+3*k),k=0..n); c(n):= coeff(fz(n),z,2)/2; end do: a:=n-> c(n): seq(a(n), n=1..nmax);
Formula
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7)
a(n) = 1/4*n^6+7/4*n^5+37/8*n^4+34/6*n^3+25/8*n^2+7/12*n
G.f.: (16 + 93*z + 66*z^2 + 5*z^3)/(1-z)^7
Comments