cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157708 The z^2 coefficients of the polynomials in the GF4 denominators of A156933.

This page as a plain text file.
%I A157708 #4 Jun 02 2025 01:25:55
%S A157708 18,254,1571,6335,19615,50743,115234,237066,451320,807180,1371293,
%T A157708 2231489,3500861,5322205,7872820,11369668,16074894,22301706,30420615,
%U A157708 40866035,54143243,70835699,91612726
%N A157708 The z^2 coefficients of the polynomials in the GF4 denominators of A156933.
%C A157708 See A157705 for background information.
%F A157708 a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7)
%F A157708 a(n) = 1/2*n^6+5/2*n^5+41/8*n^4+67/12*n^3+27/8*n^2+11/12*n
%F A157708 G.f.: (18 + 128*z + 171*z^2 + 42*z^3 + z^4)/(1-z)^7
%p A157708 nmax:=23; for n from 0 to nmax do fz(n):=product((1-(2*n+1-2*k)*z)^(3*k+1), k=0..n); c(n):= coeff(fz(n),z,2); end do: a:=n-> c(n): seq(a(n), n=1..nmax);
%Y A157708 Cf. A156933, A157705
%K A157708 easy,nonn
%O A157708 1,1
%A A157708 _Johannes W. Meijer_, Mar 07 2009