This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157752 #20 May 04 2023 10:53:54 %S A157752 2,8,68,1118,2273,197468,1728998,1728998,447914738,10152454583, %T A157752 1313795640428,97783391392958,5726413266646343,38433316595821418, %U A157752 15103232990013860963,943894249589930135768,52858423703753671390658,932521283899305953765183,8790842834979573009644273 %N A157752 Smallest positive integer m such that m == prime(i) (mod prime(i+1)) for all 1<=i<=n. %C A157752 Suggested by Chinese Remainder Theorem. %C A157752 a(n) is prime for n = 1, 5, 10, 23, 30. %H A157752 Harvey P. Dale, <a href="/A157752/b157752.txt">Table of n, a(n) for n = 1..349</a> %p A157752 A157752 := proc(n) %p A157752 local lrem,leval,i ; %p A157752 lrem := [] ; %p A157752 leval := [] ; %p A157752 for i from 1 to n do %p A157752 lrem := [op(lrem),ithprime(i+1)] ; %p A157752 leval := [op(leval),ithprime(i)] ; %p A157752 end do: %p A157752 chrem(leval,lrem) ; %p A157752 end proc: # _R. J. Mathar_, Apr 14 2016 %t A157752 a[n_] := ChineseRemainder[Prime[Range[n]], Prime[Range[2, n + 1]]] a[ # ] & /@ Range[30] %t A157752 Table[With[{pr=Prime[Range[n]]},ChineseRemainder[Most[pr],Rest[pr]]],{n,2,30}] (* _Harvey P. Dale_, Jun 11 2017 *) %o A157752 (PARI) x=Mod(1, 1); for(i=1, 20, x=chinese(x, Mod(prime(i), prime(i+1))); print1(component(x, 2), ", ")) %o A157752 (Python) %o A157752 from sympy.ntheory.modular import crt %o A157752 from sympy import prime %o A157752 def A157752(n): return int(crt((s:=[prime(i+1) for i in range(1,n)])+[prime(n+1)],[2]+s)[0]) # _Chai Wah Wu_, May 02 2023 %Y A157752 Cf. A053664, A071057, A121934. %K A157752 nonn %O A157752 1,1 %A A157752 _Zak Seidov_, Mar 05 2009 %E A157752 Edited by _Charles R Greathouse IV_, Oct 28 2009