cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157791 Least number of lattice points on two adjacent sides from which every point of a square n X n lattice is visible.

This page as a plain text file.
%I A157791 #15 Feb 16 2025 08:33:09
%S A157791 1,1,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,
%T A157791 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
%U A157791 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5
%N A157791 Least number of lattice points on two adjacent sides from which every point of a square n X n lattice is visible.
%C A157791 That is, the points are chosen from the 2n-1 points on two adjacent sides of the n X n lattice.
%H A157791 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/VisiblePoint.html">Visible Point</a>
%e A157791 a(11)= 4 because all 121 points are visible from (1,1), (1,2), (2,1), and (1,4).
%e A157791 a(25)= 4 because all 625 points are visible from (1,2), (4,1), (6,1), and (23,1).
%t A157791 Join[{1}, Table[hidden=Table[{},{n^2}]; edgePts={}; Do[pt1=(c-1)*n+d; If[c==1||d==1, AppendTo[edgePts,pt1]; lst={}; Do[pt2=(a-1)*n+b; If[GCD[c-a,d-b]>1, AppendTo[lst,pt2]], {a,n}, {b,n}]; hidden[[pt1]]=lst], {c,n}, {d,n}]; edgePts=Sort[edgePts]; done=False; k=0; done=False; k=0; While[ !done, k++; len=Binomial[2n-1,k]; i=0; While[i<len, i++; s=Subsets[edgePts,{k},{i}][[1]]; If[Intersection@@hidden[[s]]=={}, done=True; Break[]]]]; k, {n,2,11}]]
%Y A157791 Cf. A157639, A157720, A157790, A157792.
%K A157791 hard,nonn
%O A157791 1,3
%A A157791 _T. D. Noe_, Mar 06 2009
%E A157791 More terms from _Lars Blomberg_, Nov 06 2014