This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157809 #15 Jul 04 2016 03:55:55 %S A157809 1,5,37,15,1079,85,8317,455,30959,2313,338585,11275,67124549,53261, %T A157809 688219,245775,267391423,1114129,1882776439,4980755,3460132789, %U A157809 22020117,6367811021,96469015,549385297589,419430425,5243044651,1811939355,3245794417411,7784628253 %N A157809 Numerator of Bernoulli(n,3). %C A157809 From _Paul Curtz_, Feb 18 2015 (Start) %C A157809 The fractions 1, 5/2, 37/6, 15, 1079/30, 85, 8317/42, 455, 30959/30 etc are the binomial transform of the sequence of fractions Bernoulli(n,2) = 1, 3/2, 13/6, 3, 119/30, 5, 253/42 specified in A164558. %C A157809 Their table of repeated differences starts %C A157809 1, 5/2, 37/6, 15, 1079/30, ... %C A157809 3/2, 11/3, 53/6, 629/30, ... %C A157809 13/6, 31/6, 182/15, ... %C A157809 3, 209/30, ... %C A157809 119/30, ... %C A157809 etc. %C A157809 The sums of the antidiagonals in this table of differences are n*2^(n-1) %C A157809 1 = 1 %C A157809 3/2 + 5/2 = 4 %C A157809 13/6 + 11/3 + 37/6 = 12 %C A157809 3 + 31/6 + 53/6 + 15 = 32 %C A157809 etc, see A001787. %C A157809 (End) %H A157809 Vincenzo Librandi, <a href="/A157809/b157809.txt">Table of n, a(n) for n = 0..250</a> %p A157809 seq(numer(bernoulli(n,3)),n=0..50); # _Robert Israel_, Jul 03 2016 %t A157809 Table[Numerator[BernoulliB[n, 3]], {n, 0, 50}] (* _Vincenzo Librandi_, Mar 16 2014 *) %Y A157809 For denominators see A027642. %K A157809 sign,frac %O A157809 0,2 %A A157809 _N. J. A. Sloane_, Nov 10 2009