This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157813 #24 Oct 10 2023 16:20:34 %S A157813 1,1,2,3,1,1,2,3,4,5,1,1,2,3,4,5,6,7,5,3,1,1,2,4,5,7,8,9,7,3,1,1,2,3, %T A157813 4,5,6,7,8,9,10,11,7,5,1,1,2,3,4,5,6,7,8,9,10,11,12,13,11,9,5,3,1,1,2, %U A157813 4,7,8,11,13,14,15,13,11,9,7,5,3,1,1,2,3,4 %N A157813 Denominators of fractions arranged in "antidiagonal boustrophedon" ordering with equivalent fractions removed: (1/1, 2/1, 1/2, 1/3, 3/1, 4/1, 3/2, 2/3, 1/4, 1/5, 5/1, 6/1, 5/2, ...). %H A157813 Robert Israel, <a href="/A157813/b157813.txt">Table of n, a(n) for n = 1..10000</a> %p A157813 R:= NULL: count:= 0: %p A157813 for m from 2 while count < 100 do %p A157813 S:= select(t -> igcd(t,m-t)=1, [$1..m-1]); %p A157813 count:= count+nops(S); %p A157813 if m::odd then R:= R, op(S) else R:= R, seq(m-t,t=S) fi; %p A157813 od: %p A157813 R; # _Robert Israel_, Oct 09 2023 %o A157813 (Python) %o A157813 from math import gcd %o A157813 for s in range(2, 100, 2): %o A157813 for i in range(1, s): %o A157813 if gcd(i, s - i) != 1: continue %o A157813 print(s - i) %o A157813 for i in range(s, 0, -1): %o A157813 if gcd(i, s + 1 - i) != 1: continue %o A157813 print(s + 1 - i) %o A157813 # _Hiroaki Yamanouchi_, Oct 06 2014 %Y A157813 Cf. A157807 (numerators), A038567. %Y A157813 With Cantor's ordering: A020652, A020653, A352911. %K A157813 nonn,frac %O A157813 1,3 %A A157813 _Ron R. King_, Mar 07 2009 %E A157813 a(58)-a(83) from _Hiroaki Yamanouchi_, Oct 06 2014 %E A157813 Name corrected by _Andrey Zabolotskiy_, Oct 10 2023