This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157866 #14 Jul 10 2017 04:18:47 %S A157866 1,-3,1,6,-29,-74,4537,1946,-23789,-88434,15034541,6154786, %T A157866 -10417027559,-607884394,13199705071,80834386026,-34108052679853, %U A157866 -13923204233954,51709981061257363,3015393801263666,-1029159167703800359,-801997872697905114,629565265428734672873 %N A157866 Numerator of Bernoulli(n, 1/5). %C A157866 From _Wolfdieter Lang_, Jul 05 2017: (Start) %C A157866 a(n) gives also the numerators of the generalized Bernoulli numbers B[5,1](n) = 5^n*B(n, 1/5) with the Bernoulli polynomials B(n, x) = Bernoulli(n, x) from A196838/A196839 or A053382/A053383. For the denominators see A288872(n) = A157867(n)/5^n. %C A157866 (-1)^n*a(n) gives the numerators of the generalized Bernoulli numbers B[5,4](n). The denominators are also A288872(n). %C A157866 The generalized Bernoulli numbers B[d,a](n), for d >= 1, a >= 0, with gcd(d, a) = 1 are defined in terms of generalized Stirling2 numbers by B[d,a](n) = Sum_{k=0..n} ((-1)^k / (k+1))*S2[d,a](n, k)*k!, n >= 0. See A285061 for more details. %C A157866 (End) %H A157866 Vincenzo Librandi, <a href="/A157866/b157866.txt">Table of n, a(n) for n = 0..250</a> %t A157866 Table[Numerator[BernoulliB[n, 1/5]], {n, 0, 50}] (* _Vincenzo Librandi_, Mar 16 2014 *) %o A157866 (PARI) a(n)=numerator(subst(bernpol(n, x), x, 1/5)); \\ _Michel Marcus_, Jul 06 2017 %Y A157866 For denominators see A157867, and also A288872. %Y A157866 Cf. A053382/A053383, A196838/A196839, A285061. %K A157866 sign,frac %O A157866 0,2 %A A157866 _N. J. A. Sloane_, Nov 08 2009