This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157898 #12 Jun 02 2025 01:26:01 %S A157898 1,0,1,1,1,2,0,2,2,4,1,2,6,4,8,0,3,6,16,8,16,1,3,12,16,40,16,32,0,4, %T A157898 12,40,40,96,32,64,1,4,20,40,120,96,224,64,128,0,5,20,80,120,336,224, %U A157898 512,128,256 %N A157898 Triangle read by rows: inverse binomial transform of A059576. %C A157898 The inverse binomial transform of the triangle A059576 is given by multiplying the triangle with A130595 from the left. %H A157898 G. C. Greubel, <a href="/A157898/b157898.txt">Rows n = 0..50 of the triangle, flattened</a> %F A157898 Sum_{k=0..n} T(n, k) = A097076(n+1). %F A157898 From _G. C. Greubel_, Sep 03 2022: (Start) %F A157898 T(n, k) = Sum_{j=k..n} (-1)^(n-j)*binomial(n,j)*A059576(j,k). %F A157898 T(n, 0) = A059841(n). %F A157898 T(n, 1) = A004526(n-1). %F A157898 T(n, 2) = 2*A008805(n-2). %F A157898 T(n, 3) = 4*A058187(n-3). %F A157898 T(n, 4) = 8*A189976(n+4). %F A157898 T(n, n) = A011782(n). %F A157898 T(n, n-1) = A011782(n) - [n==0]. (End) %e A157898 First few rows of the triangle = %e A157898 1; %e A157898 0, 1; %e A157898 1, 1, 2; %e A157898 0, 2, 2, 4; %e A157898 1, 2, 6, 4, 8; %e A157898 0, 3, 6, 16, 8, 16; %e A157898 1, 3, 12, 16, 40, 16, 32; %e A157898 0, 4, 12, 40, 40, 96, 32, 64; %e A157898 1, 4, 20, 40, 120, 96, 224, 64, 128; %e A157898 0, 5, 20, 80, 120, 336, 224, 512, 128, 256; %e A157898 ... %p A157898 A059576 := proc (n, k) %p A157898 if n = 0 then %p A157898 return 1; %p A157898 end if; %p A157898 if k <= n and k >= 0 then %p A157898 add((-1)^j*2^(n-j-1)*binomial(k, j)*binomial(n-j, k), j = 0 .. min(k, n-k)) %p A157898 else %p A157898 0 ; %p A157898 end if %p A157898 end proc: %p A157898 A157898 := proc(n,k) %p A157898 add ( A130595(n,j)*A059576(j,k),j=k..n) ; %p A157898 end proc: # _R. J. Mathar_, Feb 13 2013 %t A157898 t[n_, k_]:= t[n, k]= If[k==0 || k==n, 2^(n-1) +Boole[n==0]/2, 2*t[n-1, k-1] + 2*t[n-1, k] -(2 -Boole[n==2])*t[n-2, k-1]]; (* t= A059576 *) %t A157898 A157898[n_, k_]:= A157898[n, k]= Sum[(-1)^(n-j)*Binomial[n,j]*t[j,k], {j,k,n}]; %t A157898 Table[A157898[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Sep 03 2022 *) %o A157898 (Magma) %o A157898 A011782:= func< n | n eq 0 select 1 else 2^(n-1) >; %o A157898 function t(n, k) // t = A059576 %o A157898 if k eq 0 or k eq n then return A011782(n); %o A157898 else return 2*t(n-1, k-1) + 2*t(n-1, k) - (2 - 0^(n-2))*t(n-2, k-1); %o A157898 end if; return t; %o A157898 end function; %o A157898 A157898:= func< n,k | (&+[(-1)^(n-j)*Binomial(n,j)*t(j,k): j in [k..n]]) >; %o A157898 [A157898(n, k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Sep 03 2022 %o A157898 (SageMath) %o A157898 @CachedFunction %o A157898 def t(n, k): # t = A059576 %o A157898 if (k==0 or k==n): return bool(n==0)/2 + 2^(n-1) # A011782 %o A157898 else: return 2*t(n-1, k-1) + 2*t(n-1, k) - (2 - 0^(n-2))*t(n-2, k-1) %o A157898 def A157898(n,k): return sum((-1)^(n-j)*binomial(n,j)*t(j,k) for j in (k..n)) %o A157898 flatten([[A157898(n, k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Sep 03 2022 %Y A157898 Cf. A059576, A097076 (row sums), A130595. %Y A157898 Cf. A004526, A008805, A011782, A058187, A059841, A189976. %K A157898 nonn,tabl,easy %O A157898 0,6 %A A157898 _Gary W. Adamson_ and _Roger L. Bagula_, Mar 08 2009