This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A157901 #14 Aug 30 2025 05:07:20 %S A157901 1,1,1,2,2,2,2,4,4,4,3,6,10,8,8,3,9,16,24,16,16,4,12,28,40,56,32,32,4, %T A157901 16,40,80,96,128,64,64,5,20,60,120,216,224,288,128,128,5,25,80,200, %U A157901 336,560,512,640,256,256,6,30,110,280,616,896,1408,1152,1408,512,512 %N A157901 Triangle read by rows: A000012 * A157898. %C A157901 Multiplication of the lower triangular matrix A157898 from the left by A000012 means: these are partial column sums of A157898. %H A157901 G. C. Greubel, <a href="/A157901/b157901.txt">Rows n = 0..50 of the triangle, flattened</a> %F A157901 T(n,k) = Sum_{j=0..n} A157898(j,k). %e A157901 First few rows of the triangle, n>=0: %e A157901 1; %e A157901 1, 1; %e A157901 2, 2, 2; %e A157901 2, 4, 4, 4; %e A157901 3, 6, 10, 8, 8; %e A157901 3, 9, 16, 24, 16, 16; %e A157901 4, 12, 28, 40, 56, 32, 32; %e A157901 4, 16, 40, 80, 96, 128, 64, 64; %e A157901 5, 20, 60, 120, 216, 224, 288, 128, 128; %e A157901 5, 25, 80, 200, 336, 560, 512, 640, 256, 256; %t A157901 t[n_, k_]:= t[n,k]= If[k==0 || k==n, 2^(n-1) +Boole[n==0]/2, 2*t[n-1,k-1] +2*t[n-1,k] - (2 -Boole[n==2])*t[n-2,k-1]]; (* t = A059576 *) %t A157901 A157898[n_, k_]:= A157898[n,k]= Sum[(-1)^(n-j)*Binomial[n,j]*t[j,k], {j,k,n}]; %t A157901 A157901[n_, k_]:= A157901[n,k]= Sum[A157898[j+k,k], {j,0,n-k}]; %t A157901 Table[A157901[n,k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Aug 27 2025 *) %o A157901 (Magma) %o A157901 A011782:= func< n | n eq 0 select 1 else 2^(n-1) >; %o A157901 function t(n, k) // t = A059576 %o A157901 if k eq 0 or k eq n then return A011782(n); %o A157901 else return 2*t(n-1, k-1) + 2*t(n-1, k) - (2 - 0^(n-2))*t(n-2, k-1); %o A157901 end if; return t; %o A157901 end function; %o A157901 A157898:= func< n, k | (&+[(-1)^(n-j)*Binomial(n, j)*t(j, k): j in [k..n]]) >; %o A157901 A157071:= func< n,k | (&+[A157898(j+k,k): j in [0..n-k]]) >; %o A157901 [A157071(n, k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Aug 27 2025 %o A157901 (SageMath) %o A157901 @CachedFunction %o A157901 def t(n, k): # t = A059576 %o A157901 if (k==0 or k==n): return bool(n==0)/2 + 2^(n-1) # A011782 %o A157901 else: return 2*t(n-1, k-1) + 2*t(n-1, k) - (2 - 0^(n-2))*t(n-2, k-1) %o A157901 def A157898(n, k): return sum((-1)^(n+k-j)*binomial(n, j+k)*t(j+k, k) for j in range(n-k+1)) %o A157901 def A157071(n,k): return sum(A157898(j+k,k) for j in range(n-k+1)) %o A157901 print(flatten([[A157071(n,k) for k in range(n+1)] for n in range(10)])) # _G. C. Greubel_, Aug 27 2025 %Y A157901 Cf. A000012, A105635, A157898. %Y A157901 Columns: A004526 (k=0), A002620 (k=1), A006584 (k=2), 4*A096338 (k=3), 8*A177747 (k=4), 16*A299337 (k=5), 32*A178440 (k=6). %Y A157901 Sums include: A105635(n+1) (row), A166486(n+1) (alternating sign diagonal), A232801(n+1) (diagonal). %K A157901 nonn,tabl,changed %O A157901 0,4 %A A157901 _Gary W. Adamson_ & _Roger L. Bagula_, Mar 08 2009 %E A157901 Edited by the Associate Editors of the OEIS, Apr 10 2009 %E A157901 More terms from _G. C. Greubel_, Aug 27 2025