cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157931 Numbers that are both the sum and the product of two primes.

This page as a plain text file.
%I A157931 #19 Mar 02 2019 02:19:12
%S A157931 4,6,9,10,14,15,21,22,25,26,33,34,38,39,46,49,55,58,62,69,74,82,85,86,
%T A157931 91,94,106,111,115,118,122,129,133,134,141,142,146,158,159,166,169,
%U A157931 178,183,194,201,202,206,213,214,218,226,235,253,254,259,262,265,274,278
%N A157931 Numbers that are both the sum and the product of two primes.
%C A157931 Assuming the Goldbach conjecture, this is A001358 intersect (A005843 union A052147), since an odd number n is the sum of two primes iff n-2 is prime. - _N. J. A. Sloane_, Mar 14 2009
%C A157931 The first few terms of A001358: Semiprimes, not members of A157931 are: 35, 51, 57, 65, 77, 87, 93, 95, ..., . - _Robert G. Wilson v_, Mar 15 2009
%H A157931 Donovan Johnson, <a href="/A157931/b157931.txt">Table of n, a(n) for n = 1..10000</a> (first 1096 terms from Robert G. Wilson v)
%F A157931 A014091 INTERSECT A001358. - _R. J. Mathar_, Mar 15 2009
%e A157931 For the numbers up to 100, the solutions are 4 = (2+2) = (2*2); 6 = (3+3) = (2*3); 9 = (2+7) = (3*3); 10 = (3+7) = (2*5); 14 = (3+11) = (2*7); 15 = (2+13) = (3*5); 21 = (2+19) = (3*7); 22 = (3+19) = (2*11); 25 = (2+23) = (5*5); 26 = (3+23) = (2*13); 33 = (2+31) = (3*11); 34 = (3+31) = (2*17); 38 = (7+31) = (2*19); 39 = (2+37) = (3*13); 46 = (3+43) = (2*23); 49 = (2+47) = (7*7); 55 = (2+53) = (5*11); 58 = (5+53) = (2*29); 62 = (3+59) = (2*31); 69 = (2+67) = (3*23); 74 = (3+71) = (2*37); 82 = (3+79) = (2*41); 85 = (2+83) = (5*17); 86 = (3+83) = (2*43); 91 = (2+89) = (7*13); 94 = (5+89) = (2*47).
%p A157931 isA014091 := proc(n) for i from 1 do p := ithprime(i) ; if p > n/2 then RETURN(false); fi; if isprime(n-p) then RETURN(true) ; fi; od: end: isA001358 := proc(n) RETURN(numtheory[bigomega](n) = 2) ; end: for n from 4 to 500 do if isA001358(n) and isA014091(n) then printf("%d,",n) ; fi; od: # _R. J. Mathar_, Mar 15 2009
%t A157931 fQ[n_] := Block[{k = 2}, While[k < n, If[ PrimeQ[n - k], Break[]]; k = NextPrime@k]; k + 1 < n]; semiPrimeQ[n_] := Plus @@ Last /@ FactorInteger@n == 2; Select[ Range@ 295, fQ@# && semiPrimeQ@# &] (* _Robert G. Wilson v_, Mar 15 2009 *)
%t A157931 Select[Union[Flatten[Table[Prime[i] + Prime[j], {i, 50}, {j, 50}]]], PrimeOmega[#] == 2 &] (* _Alonso del Arte_, Feb 08 2013 *)
%t A157931 Union[Select[Total/@Tuples[Prime[Range[60]],2],PrimeOmega[#]==2&]] (* _Harvey P. Dale_, Jul 27 2015 *)
%o A157931 (Haskell)
%o A157931 a157931 n = a157931_list !! (n-1)
%o A157931 a157931_list = filter ((== 1) . a064911) a014091_list
%o A157931 -- _Reinhard Zumkeller_, Oct 15 2014
%Y A157931 Cf. A001358, A005843, A052147, A062721.
%Y A157931 Cf. A043326 Numbers n such that n is a product of two different primes and n - 2 is prime, A062721 Numbers n such that n is a product of two primes and n - 2 is prime. - _Zak Seidov_, Mar 15 2009
%Y A157931 Cf. A014091, A064911, A100962.
%K A157931 easy,nonn,nice
%O A157931 1,1
%A A157931 William Weeks (dach(AT)kuci.org), Mar 09 2009
%E A157931 Edited by _N. J. A. Sloane_, Mar 14 2009
%E A157931 Extended by _R. J. Mathar_ and _Robert G. Wilson v_, Mar 15 2009