A157933 Triangle T(i,j) such that Sum_{j=0..i} T(i,j)*x(i,j)/2^i = Sum_{k=0..i, j=0..k} x(k,j), if x(k-1,j) = (x(k,j) + x(k,j+1))/2.
1, 3, 3, 7, 10, 7, 15, 25, 25, 15, 31, 56, 66, 56, 31, 63, 119, 154, 154, 119, 63, 127, 246, 337, 372, 337, 246, 127, 255, 501, 711, 837, 837, 711, 501, 255, 511, 1012, 1468, 1804, 1930, 1804, 1468, 1012, 511, 1023, 2035, 2992, 3784, 4246, 4246, 3784, 2992, 2035, 1023
Offset: 0
Examples
To get the 3rd row of the triangle, consider the pyramid f d e a b c where d=(a+b)/2, e=(b+c)/2, f=(d+e)/2. Then a+b+c+d+e+f=(7a+10b+7c)/2^2, which yields the row (7,10,7). Triangle begins: 1, 3, 3; 7, 10, 7; 15, 25, 25, 15; 31, 56, 66, 56, 31; 63, 119, 154, 154, 119, 63; ...
Formula
The first and last term in the (i+1)-th row is T(i,0) = 2^(i+1)-1.
The second and penultimate term is T(i,1) = T(i,0) + T(i-1,1).
G.f.: 1/((1-2*x)*(1-2*x*y)*(1-x-x*y)). - Yu-Sheng Chang, Sep 20 2023
Comments