A158013 100*a(n)+13 and 100*a(n)+27 are consecutive primes, i.e., a prime gap 14.
1, 106, 133, 154, 184, 217, 220, 307, 334, 436, 454, 496, 505, 574, 580, 604, 616, 631, 805, 892, 1009, 1015, 1045, 1132, 1174, 1189, 1198, 1204, 1360, 1408, 1444, 1504, 1510, 1627, 1702, 1708, 1771, 1954, 1984, 2101, 2182, 2218, 2221, 2245, 2260, 2281
Offset: 1
Keywords
Examples
1) 113=P(30) and 127=P(31) => a(1)=1. 2) 1613=P(255) and 1627=P(258) prime too but 1619=P(256), 1621=P(257) => 1613 and 1627 are not consecutive primes. 3) next: 10613=P(1295), 10627 = P(1296) => a(2)=106.
References
- N. G. Tchudakoff, On the difference between two neighboring prime numbers, Math. Sb. 1, (1936), 799-814.
- R. K. Guy, Unsolved problems in number theory
Links
- A. E. Ingham, On the difference between consecutive primes, Quart. J. Math. Oxford 8 (1937), 255-266.
Crossrefs
Cf. A157772 (primes ending with "13" ordered in natural growing size).
Programs
-
Mathematica
fQ[n_] := PrimeQ[ Range[100 n + 13, 100 n + 27, 2]] == {True, False, False, False, False, False, False, True}; Select[ Range@ 2295, fQ@# &] (* Robert G. Wilson v, Mar 13 2009 *)
Formula
p(k+1)=100*a(n)+27 and p(k)=100*a(n)+13 where p(k) is the k-th prime => prime gap p(k+1)-p(k)=14.
Extensions
a(31)-a(46) from Robert G. Wilson v, Mar 13 2009
Comments