A158022 Integers k such that all the digits needed to write the consecutive nonnegative integers from 0 to k fill exactly a square (no holes, no overlaps).
0, 3, 8, 12, 22, 36, 54, 76, 101, 121, 132, 156, 169, 197, 212, 244, 261, 297, 316, 356, 377, 421, 444, 492, 517, 569, 596, 652, 681, 741, 772, 836, 869, 937, 972, 10221, 10626, 11041, 11466, 11901, 12346, 12801, 13266, 13741, 14226, 14721, 15226
Offset: 1
Examples
...0...01...012...0123...012345 .......23...345...4567...678910 ............678...8910...111213 ..................1112...141516 .........................171819 .........................202122 The integers fitting exactly in the SE corner of the above squares are 0, 3, 8, 12, 22. There is no 5x5 square where this is possible.
Links
- Dominic McCarty, Table of n, a(n) for n = 1..10000
- Eric Angelini, Digit Spiral
- Eric Angelini, Digit Spiral [Cached copy, with permission]
Programs
-
Python
from math import isqrt a, k, l = [], 0, 0 while len(a) < 40: l += len(str(k)) if l == isqrt(l) ** 2: a.append(k) k += 1 print(a) # Dominic McCarty, Mar 28 2025
Comments