This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158035 #20 Jun 15 2025 23:16:37 %S A158035 7,23,47,167,263,359,383,479,487,503,719,839,863,887,983,1319,1367, %T A158035 1439,1487,1783,1823,2039,2063,2207,2447,2879,2903,2999,3023,3079, %U A158035 3119,3167,3623,3863,4007,4079,4127,4423,4679,4703,4799,4919,5023,5087,5399,5639 %N A158035 a(n) = 2*A158034(n) + 1, prime numbers p for which f = (2^p - 2^((p - 1) / 2 + 1) + 4p^2 - 8p) / (2p^2 - 2p) is an integer. %C A158035 (p - 1) / 2 is often prime. %H A158035 Harvey P. Dale, <a href="/A158035/b158035.txt">Table of n, a(n) for n = 1..1000</a> %H A158035 Mario Raso, <a href="https://hdl.handle.net/11573/1732819">Integer Sequences in Cryptography: A New Generalized Family and its Application</a>, Ph. D. Thesis, Sapienza University of Rome (Italy 2025). See p. 112. %p A158035 A158035 := proc(n) local i,am,p,tren; %p A158035 am := [ ]: %p A158035 for i from 2 to n do %p A158035 p := ithprime(i): %p A158035 tren := (2^(p) - 2^((p - 1) / 2 + 1) + 4*p^(2) - 8*p) / (2*p^(2) - 2*p): %p A158035 if (type( tren, 'integer') = 'true') then %p A158035 am := [op(am),p]: %p A158035 fi %p A158035 od; RETURN(am) end: %p A158035 A158035(740); # _Jani Melik_, May 06 2013 %t A158035 Select[Prime[Range[800]],IntegerQ[(2^#-2^((#-1)/2+1)+4#^2-8#)/(2#^2-2#)]&] (* _Harvey P. Dale_, Nov 08 2017 *) %Y A158035 Cf. A158034. %Y A158035 Cf. A002515 (Lucasian primes). %Y A158035 Cf. A145918 (exponential Sophie Germain primes). %Y A158035 Cf. A046318, A139876 (related to composite members of A158034: 243, 891, 1539, and 2511). %K A158035 easy,nonn %O A158035 1,1 %A A158035 _Reikku Kulon_, Mar 11 2009