cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158046 Determinant of power series with alternate signs of gamma matrix with determinant 3!.

This page as a plain text file.
%I A158046 #16 Nov 27 2015 00:35:22
%S A158046 6,-12,294,-4800,33006,-868476,8045022,-133497600,1840843662,
%T A158046 -23069939772,357884304366,-4506695659200,65700186820638,
%U A158046 -892588899692796,12240418932523614,-172125321194572800,2335747604463776238,-32681605781959208508,448728077274231515214
%N A158046 Determinant of power series with alternate signs of gamma matrix with determinant 3!.
%C A158046 a(n) = Determinant(A - A^2 + A^3 - A^4 + A^5 - ... - (-1)^n*A^n).
%C A158046 where A is the submatrix A(1..4,1..4) of the matrix with factorial determinant
%C A158046 A = [[1,1,1,1,1,1,...], [1,2,1,2,1,2,...], [1,2,3,1,2,3,...], [1,2,3,4,1,2,...], [1,2,3,4,5,1,...], [1,2,3,4,5,6,...], ...]; note: Determinant A(1..n,1..n) = (n-1)!.
%C A158046 a(n) is even with respect to signs of power of A.
%D A158046 G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008
%F A158046 Empirical g.f.: -6*x*(6*x^2 -1)*(46656*x^12 -190512*x^10 +60480*x^9 +243432*x^8 -21168*x^7 -100984*x^6 -3528*x^5 +6762*x^4 +280*x^3 -147*x^2 +1) / ((x -1)*(6*x -1)*(6*x^4 +22*x^3 +23*x^2 +10*x +1)*(216*x^4 +360*x^3 +138*x^2 +22*x +1)*(216*x^6 -828*x^5 +1284*x^4 -808*x^3 +214*x^2 -23*x +1)). - _Colin Barker_, Jul 14 2014
%e A158046 a(1) = Determinant(A) = 3! = 6.
%p A158046 with(LinearAlgebra):
%p A158046 A:= Matrix([[1, 1, 1, 1], [1, 2, 1, 2], [1, 2, 3, 1], [1, 2, 3, 4]]):
%p A158046 a:= n-> Determinant(add(A^i*(-1)^(i-1), i=1..n)):
%p A158046 seq(a(n), n=1..30);
%o A158046 (PARI) vector(100, n, matdet(sum(k=1, n, [1,1,1,1 ; 1,2,1,2 ; 1,2,3,1 ; 1,2,3,4]^k*(-1)^(k-1)))) \\ _Colin Barker_, Jul 14 2014
%Y A158046 Cf. A111490, A158040-A158045.
%K A158046 sign
%O A158046 1,1
%A A158046 _Giorgio Balzarotti_ and _Paolo P. Lava_, Mar 11 2009
%E A158046 More terms, and offset changed to 1 by _Colin Barker_, Jul 14 2014