This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158064 #22 Sep 08 2022 08:45:42 %S A158064 38,148,330,584,910,1308,1778,2320,2934,3620,4378,5208,6110,7084,8130, %T A158064 9248,10438,11700,13034,14440,15918,17468,19090,20784,22550,24388, %U A158064 26298,28280,30334,32460,34658,36928,39270,41684,44170,46728,49358,52060 %N A158064 a(n) = 36*n^2 + 2*n. %C A158064 The identity (36*n + 1)^2 - (36*n^2 + 2*n)*6^2 = 1 can be written as A158065(n)^2 - a(n)*6^2 = 1. - _Vincenzo Librandi_, Feb 11 2012 %H A158064 Vincenzo Librandi, <a href="/A158064/b158064.txt">Table of n, a(n) for n = 1..10000</a> %H A158064 E. J. Barbeau, <a href="http://www.math.toronto.edu/barbeau/home.html">Polynomial Excursions</a>, Chapter 10: <a href="http://www.math.toronto.edu/barbeau/hxpol10.pdf">Diophantine equations</a> (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(6^2*t+2)). %H A158064 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A158064 G.f.: 2*x*(-19 - 17*x)/(x-1)^3. - _Vincenzo Librandi_, Feb 11 2012 %F A158064 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - _Vincenzo Librandi_, Feb 11 2012 %t A158064 LinearRecurrence[{3, -3, 1}, {38, 148, 330}, 50] (* _Vincenzo Librandi_, Feb 11 2012 *) %o A158064 (Magma) I:=[38, 148, 330]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // _Vincenzo Librandi_, Feb 11 2012 %o A158064 (PARI) for(n=1, 40, print1(36*n^2 + 2*n", ")); \\ _Vincenzo Librandi_, Feb 11 2012 %Y A158064 Cf. A158065. %K A158064 nonn,easy %O A158064 1,1 %A A158064 _Vincenzo Librandi_, Mar 12 2009