This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158093 #7 Jan 29 2022 02:58:14 %S A158093 1,3,-36,6201,-10519740,168009075234,-24937507748845692, %T A158093 34147337933260567913832,-429040882807948915054596365580, %U A158093 49262806958277650055073574841789707655 %N A158093 a(n) = 3^(n^2+n)*C(1/3^n, n) = [x^n] (1 + 3^(n+1)*x)^(1/3^n). %C A158093 A(1) = Sum_{n>=0} C(1/3^n,n) = Sum_{n>=0} log(1+1/3^n)^n/n! = 1.293240509200709604261070... %H A158093 Seiichi Manyama, <a href="/A158093/b158093.txt">Table of n, a(n) for n = 0..45</a> %F A158093 G.f.: A(x) = Sum_{n>=0} a(n)*x^n/3^(n^2+n) = Sum_{n>=0} log(1+x/3^n)^n/n!. %e A158093 G.f.: A(x) = 1 +3*x/3^2 -36*x^2/3^6 +6201*x^3/3^12 -10519740*x^4/3^20 +... %e A158093 A(x) = 1 + log(1+x/3) + log(1+x/9)^2/2! + log(1+x/27)^3/3! +...+ log(1+x/3^n)^n/n! +... %e A158093 Illustrate a(n) = [x^n] (1 + 3^(n+1)*x)^(1/3^n): %e A158093 (1+9*x)^(1/3) = 1 + (3)*x - 9*x^2 + 45*x^3 - 270*x^4 +... %e A158093 (1+27*x)^(1/9) = 1 + 3*x - (36)*x^2 + 612*x^3 - 11934*x^4 +... %e A158093 (1+81*x)^(1/27) = 1 + 3*x - 117*x^2 + (6201)*x^3 - 372060*x^4 +... %e A158093 (1+243*x)^(1/81) = 1 + 3*x - 360*x^2 + 57960*x^3 - (10519740)*x^4 +... %e A158093 Special values of A(x). %e A158093 A(1) = 1 + log(4/3) + log(10/9)^2/2! + log(28/27)^3/3! +... %e A158093 A(3) = 1 + log(2) + log(4/3)^2/2! + log(10/9)^3/3! +... %e A158093 A(9) = 1 + log(4) + log(2)^2/2! + log(4/3)^3/3! + log(10/9)^4/4! +... %e A158093 A(r) = 2 at r=4.50548200106313905... %e A158093 A(r) = 3 at r=12.21509538023664538... %e A158093 A(r) = 4 at r=22.9609516534592247304... %o A158093 (PARI) a(n)=3^(n^2+n)*binomial(1/3^n,n) %Y A158093 Cf. A159478, A159558, A183131. %K A158093 sign %O A158093 0,2 %A A158093 _Paul D. Hanna_, Apr 21 2009