This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158099 #13 Apr 27 2022 13:23:56 %S A158099 1,2,19,548,66749,33695574,68787981855,563088066184424, %T A158099 18447871299903970005,2417888543453357864445634, %U A158099 1267655436282309648681395304255,2658458526916981532120588021462151100,22300750515466692968838881088968809185127601 %N A158099 Euler transform of square powers of 2: [2,2^4,2^9,...,2^(n^2),...]. %H A158099 Alois P. Heinz, <a href="/A158099/b158099.txt">Table of n, a(n) for n = 0..35</a> %F A158099 G.f.: A(x) = 1/Product_{n>=1} (1 - x^n)^(2^(n^2)). %F A158099 G.f.: exp( Sum_{n>=1} L(n)*x^n/n ) where L(n) = Sum_{d|n} d*2^(d^2). [_Paul D. Hanna_, Oct 18 2009] %e A158099 G.f.: A(x) = 1 + 2*x + 19*x^2 + 548*x^3 + 66749*x^4 +... %e A158099 A(x) = 1/[(1-x)^2*(1-x^2)^(2^4)*(1-x^3)^(2^9)*(1-x^4)^(2^16)*...]. %p A158099 with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:= etr(n->2^(n^2)): %p A158099 seq(a(n), n=0..15); # _Alois P. Heinz_, Sep 03 2012 %t A158099 etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; a = etr[Function[{n}, 2^(n^2)]]; Table[a[n], {n, 0, 15}] (* _Jean-François Alcover_, Mar 05 2015, after _Alois P. Heinz_ *) %o A158099 (PARI) a(n)=polcoeff(1/prod(k=1,n,(1-x^k+x*O(x^n))^(2^(k^2))),n) %o A158099 (PARI) {a(n)=polcoeff(exp(sum(m=1,n,sumdiv(m,d,d*2^(d^2))*x^m/m)+x*O(x^n)),n)} \\ _Paul D. Hanna_, Oct 18 2009 %Y A158099 Cf. A002416, A034899, A158098. %K A158099 nonn %O A158099 0,2 %A A158099 _Paul D. Hanna_, Mar 20 2009