This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158104 #5 Nov 24 2015 03:36:28 %S A158104 1,4,152,49920,191701440,9659304851456,6631121047328399360, %T A158104 63121566305846614746333184,8450364710466604643357631528951808, %U A158104 16116664948206611884835318695391740990586880 %N A158104 a(n) = [x^n] 1/eta(x)^(4^n). %C A158104 Here eta(q) is the q-expansion of the Dedekind eta function without the q^(1/24) factor (A010815). %F A158104 G.f.: A(x) = Sum_{n>=0} (-1)^n*log( eta(4^n*x) )^n/n!. %F A158104 G.f.: A(x) = Sum_{n>=0} [ Sum_{k>=1} ( (4^n*x)^k/(1 - (4^n*x)^k) )/k ]^n/n!. %F A158104 a(n) = [x^n] P(x)^(4^n) where P(x) = 1/eta(x) = Product_{n>0} 1/(1-x^n) = g.f. of the partition numbers (A000041). %e A158104 G.f.: A(x) = 1 + 4*x + 152*x^2 + 49920*x^3 + 191701440*x^4 +... %e A158104 A(x) = 1 - log(eta(4*x)) + log(eta(16*x))^2/2! - log(eta(64*x))^3/3! +-... %e A158104 ... %e A158104 Let P(x) = 1/eta(x) denote the g.f. of the partition numbers A000041: %e A158104 P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 +... %e A158104 then a(n) is the coefficient of x^n in P(x)^(4^n): %e A158104 P(x)^(4^0): [(1),1,2,3,5,7,11,15,22,30,42,56,77,101,135,176,...]; %e A158104 P(x)^(4^1): [1,(4),14,40,105,252,574,1240,2580,5180,10108,...]; %e A158104 P(x)^(4^2): [1,16,(152),1088,6460,33440,155584,663936,2636326,...]; %e A158104 P(x)^(4^3): [1,64,2144,(49920),905840,13627264,176638592,...]; %e A158104 P(x)^(4^4): [1,256,33152,2894848,(191701440),10266643968,...]; %e A158104 P(x)^(4^5): [1,1024,525824,180531200,46620870400,(9659304851456),...]; %e A158104 where terms in parenthesis form the initial terms of this sequence. %t A158104 a[n_] := SeriesCoefficient[1/QPochhammer[q]^(4^n), {q, 0, n}]; Table[a[n], {n, 0, 10}] (* _Jean-François Alcover_, Nov 24 2015 *) %o A158104 (PARI) {a(n)=polcoeff(1/eta(x+x*O(x^n))^(4^n), n)} %o A158104 (PARI) {a(n)=polcoeff(sum(m=0,n,(-1)^m*log(eta(4^m*x+x*O(x^n)))^m/m!), n)} %o A158104 (PARI) {a(n)=polcoeff(sum(m=0,n,sum(k=1,n,(4^m*x)^k/(1-(4^m*x)^k)/k+x*O(x^n))^m/m!),n)} %Y A158104 Cf. A000041, A158102, A158103, A158105, A158112, A158113, A158114, A158115. %K A158104 nonn %O A158104 0,2 %A A158104 _Paul D. Hanna_, Mar 12 2009