This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158122 #6 May 22 2015 17:44:53 %S A158122 1,2,0,0,2,-4,0,0,-16,40,0,0,200,-544,0,0,-3006,8540,0,0,49956, %T A158122 -145720,0,0,-884352,2625648,0,0,16349648,-49161024,0,0,-311986480, %U A158122 947069352,0,0,6098614912,-18650752400,0,0,-121497078016,373773754912,0,0 %N A158122 G.f. A(x) satisfies: A(x)^2 = 1/AGM(1, 1 - 8*x/A(x)^2 ). %C A158122 See A060691 for the expansion of AGM(1,1-8x), where AGM denotes the arithmetic-geometric mean. %F A158122 G.f.: A(x) = sqrt( x/Series_Reversion( x/AGM(1,1-8*x) ) ). %F A158122 Self-convolution equals A158100. %F A158122 Contribution from _Paul D. Hanna_, Mar 14 2009: (Start) %F A158122 Quadrasections are A158212(n) = A158122(4n) and A158213 = A158122(4n+1); %F A158122 let B(x), C(x), be the g.f.s of A158212 and A158213, respectively, %F A158122 then C(x) = 2/B(x) so that %F A158122 A(x) = B(x^4) + x*C(x^4) = B(x^4) + 2*x/B(x^4) = 2/C(x^4) + x*C(x^4). (End) %e A158122 G.f.: A(x) = 1 + 2*x + 2*x^4 - 4*x^5 - 16*x^8 + 40*x^9 + 200*x^12 -+... %e A158122 A(x)^2 = 1 + 4*x + 4*x^2 + 4*x^4 - 16*x^6 - 28*x^8 + 176*x^10 +... %e A158122 Contribution from _Paul D. Hanna_, Mar 14 2009: (Start) %e A158122 G.f. of quadrasection A158212 is: %e A158122 B(x) = 1 + 2*x - 16*x^2 + 200*x^3 - 3006*x^4 + 49956*x^5 +...; %e A158122 G.f. of quadrasection A158213 is C(x) = 2/B(x): %e A158122 C(x) = 2 - 4*x + 40*x^2 - 544*x^3 + 8540*x^4 - 145720*x^5 +... %e A158122 where g.f. A(x) = B(x^4) + x*C(x^4) = B(x^4) + 2*x/B(x^4). (End) %o A158122 (PARI) {a(n)=polcoeff(sqrt(x/serreverse(x/agm(1,1-8*x +x*O(x^n)))),n)} %Y A158122 Cf. A060691, A158100 (self-convolution), A258053. %Y A158122 Cf. quadrasections: A158212, A158213. %K A158122 sign %O A158122 0,2 %A A158122 _Paul D. Hanna_, Mar 13 2009