cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158138 Number of nondecreasing integer sequences of length 4 with sum zero and sum of absolute values 2n.

Original entry on oeis.org

1, 4, 6, 11, 13, 22, 24, 35, 39, 52, 56, 73, 77, 96, 102, 123, 129, 154, 160, 187, 195, 224, 232, 265, 273, 308, 318, 355, 365, 406, 416, 459, 471, 516, 528, 577, 589, 640, 654, 707, 721, 778, 792, 851, 867, 928, 944, 1009, 1025, 1092, 1110, 1179, 1197, 1270, 1288
Offset: 1

Views

Author

R. H. Hardin, Mar 13 2009

Keywords

Comments

a(n) = A000041(n)^2 for n<=2
a(n) = A000041(n)^2 - cumulative A000712(2*n-1-length), 0 <= 2*n-1-length <= floor(n/2) [empirical].

Examples

			For n = 6, we count the possible concatenations of the 4 pairs in the list (-6,0),(-5,-1),(-4,-2),(-3,-3) with their negative reversed correspondants (starting with (-6,0,0,6)), giving (6/2 + 1)^2 = 16 quadruples, plus the 3 quadruples (-6,1,1,4), (-6,1,2,3), (-6,2,2,2) and their 3 negative reversed correspondants, giving a total of 22 possibilities. - _Georg Fischer_, Apr 20 2022
		

Crossrefs

Cf. A069905, A158139-A158184 (for length 5..50).

Programs

  • AWK
    # empirical
    function a(n) { s=1; for(i=1; i
    				

Formula

a(n) = (floor(n/2) + 1)^2 + 2*A069905(n). - Georg Fischer, Apr 20 2022