cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158196 Expansion of (1-x^2*c(x)^4)/(1-3*x*c(x)^2), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 3, 14, 71, 370, 1950, 10332, 54895, 292106, 1555706, 8289732, 44186710, 235575028, 1256093084, 6698073528, 35719158591, 190488112122, 1015885525794, 5417869631028, 28894620083346, 154102115782812
Offset: 0

Views

Author

Paul Barry, Mar 13 2009

Keywords

Comments

Apply the inverse of the Riordan array (1/(1-x^2),x/(1+x)^2) to 3^n. Hankel transform is A001653.

Crossrefs

Cf. A090317.

Formula

Conjecture: +3*(n+1)*a(n) +2*(-26*n+7)*a(n-1) +16*(18*n-25)*a(n-2) +256*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Feb 05 2015
Conjecture: 3*(2*n+3)*(n+1)*a(n) +2*(-28*n^2-52*n+21)*a(n-1) +32*(2*n+5)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Feb 05 2015