This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158215 #10 Nov 06 2015 02:01:26 %S A158215 11,0,100111001,110111011,1110111110111,10111101110111101, %T A158215 100111111111111111001,1111111111111111111,11111111111111111111111, %U A158215 1111110111111111111111110111111,11111101111111110101111111110111111 %N A158215 Smallest palindromic prime made up of 0's and p(n) 1's, where p(n) is the n-th prime = A000040(n) (or 0 when no such prime exists). %C A158215 Smallest palindromic prime with digit sum A000040(n) and using only 0's and 1's. Subsequence of A158214. %C A158215 Smallest palindromic prime with digit sum A000040(n) and using only 0's and 1's. Subsequence of A100580.(Sequence link edited). [_Lekraj Beedassy_, Jun 21 2009] %H A158215 Chai Wah Wu, <a href="/A158215/b158215.txt">Table of n, a(n) for n = 1..168</a> %o A158215 (Python) %o A158215 from __future__ import division %o A158215 from itertools import combinations %o A158215 from sympy import prime, isprime %o A158215 def A158215(n): %o A158215 if n == 1: %o A158215 return 11 %o A158215 if n == 2: %o A158215 return 0 %o A158215 p2 = prime(n)//2 %o A158215 l = p2 %o A158215 while True: %o A158215 for i in combinations(range(l),l-p2): %o A158215 s = ['1']*l %o A158215 for x in i: %o A158215 s[x] = '0' %o A158215 s = ''.join(s) %o A158215 q = int(s+'1'+s[::-1]) %o A158215 if isprime(q): %o A158215 return q %o A158215 l += 1 # _Chai Wah Wu_, Nov 05 2015 %Y A158215 Cf. A157712 %Y A158215 Cf. A158214. [_Lekraj Beedassy_, Jun 21 2009] %K A158215 nonn,base %O A158215 1,1 %A A158215 _Lekraj Beedassy_, Mar 13 2009