This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158258 #2 Mar 30 2012 18:37:16 %S A158258 1,1,4,21,186,2482,52431,1742069,92198200,7788221136,1053871857226, %T A158258 228795949744458,79812945269217967,44781474458725910347, %U A158258 40447360752560508229164,58848264986153917140728453 %N A158258 L.g.f.: exp(Sum_{n>=1} a(n)*x^n/n) = 1 + x*exp(Sum_{n>=1} Lucas(n)*a(n)*x^n/n) where Lucas(n) = A000204(n). %F A158258 L.g.f.: exp(Sum_{n>=1} a(n)*x^n/n) = 1 + x*G(x) where G(x) = g.f. of A158257. %F A158258 exp(Sum_{n>=1} a(n)*x^n/n) = (1 + Sum_{n>=1} Lucas(n)*a(n)*x^n) / (1 + Sum_{n>=1} (Lucas(n)-1)*a(n)*x^n). %e A158258 L.g.f.: A(x) = x + x^2/2 + 4*x^3/3 + 21*x^4/4 + 186*x^5/5 + 2482*x^6/6 +... %e A158258 exp(A(x)) = 1 + x + x^2 + 2*x^3 + 7*x^4 + 44*x^5 + 458*x^6 + 7953*x^7 +... %e A158258 exp(A(x)) = 1 + x*G(x) where G(x) is the g.f. of A158257 such that: %e A158258 log(G(x)) = x + 3*1*x^2/2 + 4*4*x^3/3 + 7*21*x^4/4 + 11*186*x^5/5 + 18*2482*x^6/6 +... %o A158258 (PARI) {a(n)=local(A=x+x^2);if(n==0,1,for(i=1,n-1,A=log(1+x*exp(sum(m=1,n,(fibonacci(m-1)+fibonacci(m+1))*x^m*polcoeff(A+x*O(x^m),m) )+x*O(x^n))));n*polcoeff(A,n))} %Y A158258 Cf. A158257, A158108 (variant), A000204 (Lucas). %K A158258 nonn %O A158258 0,3 %A A158258 _Paul D. Hanna_, Mar 28 2009