This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158335 #2 Mar 30 2012 17:34:35 %S A158335 1,0,-1,1,-2,1,0,-9,6,-1,1,-12,38,-12,1,0,-25,100,-110,20,-1,1,-30, %T A158335 255,-452,255,-30,1,0,-49,490,-1519,1484,-511,42,-1,1,-56,924,-3976, %U A158335 6470,-3976,924,-56,1,0,-81,1512,-9324,21816,-21942,9240,-1548,72,-1,1,-90 %N A158335 A triangle of matrix polynomials: m(n)=antisymmeticmatix(n).Transpose[antisymmeticmatix(n)]. %C A158335 Row sums are: %C A158335 {1, -1, 0, -4, 16, -16, 0, -64, 256, -256, 0,...}. Unsigned row sums are: %C A158335 {1, 1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144,...}. %C A158335 Example matrix is: %C A158335 M(3)={{2, -1, -1}, %C A158335 {-1, 2, -1}, %C A158335 {-1, -1, 2}} %F A158335 m(n)=antisymmeticmatix(n).Transpose[antisymmeticmatix(n)]; %F A158335 out_(n,m)=coefficients(characteristicpolynomial(m(n),x),x). %e A158335 {1}, %e A158335 {0, -1}, %e A158335 {1, -2, 1}, %e A158335 {0, -9, 6, -1}, %e A158335 {1, -12, 38, -12, 1}, %e A158335 {0, -25, 100, -110, 20, -1}, %e A158335 {1, -30, 255, -452, 255, -30, 1}, %e A158335 {0, -49, 490, -1519, 1484, -511, 42, -1}, %e A158335 {1, -56, 924, -3976, 6470, -3976, 924, -56, 1}, %e A158335 {0, -81, 1512, -9324, 21816, -21942, 9240, -1548, 72, -1}, %e A158335 {1, -90, 2445, -19320, 63090, -92252, 63090, -19320, 2445, -90, 1} %t A158335 Clear[M, T, d, a, x, a0]; %t A158335 T[n_, m_, d_] := If[ m < n, (-1)^(n + m), If[m > n, -(-1)^(n + m), 0]]; %t A158335 M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}].Transpose[Table[T[n, m, d], {n, 1, d}, {m, 1, d}]]; %t A158335 Table[Det[M[d]], {d, 1, 10}]; %t A158335 Table[M[d], {d, 1, 10}] %t A158335 Table[CharacteristicPolynomial[M[d], x], {d, 1, 10}]; %t A158335 a = Join[{{1}}, Table[CoefficientList[Expand[CharacteristicPolynomial[M[ n], x]], x], {n, 1, 10}]]; %t A158335 Flatten[a]; Join[{1}, Table[Apply[Plus, CoefficientList[Expand[ CharacteristicPolynomial[M[n], x]], x]], {n, 1, 10}]]; %Y A158335 A119467 %K A158335 sign,tabl,uned %O A158335 0,5 %A A158335 _Roger L. Bagula_, Mar 16 2009