A158345 The number of pairs of independent outcomes when rolling an n-sided die. Or in other words, the number of pairs of proper subsets A,B of a set S, such that #A/#S * #B/#S = #(A \intersect B)/#S.
1, 5, 13, 53, 61, 845, 253, 7509, 16141, 128045, 4093, 1785965, 16381, 23576285, 55921333, 274696789, 262141, 5338300157, 1048573, 63028146573, 117924207421, 995274180125, 16777213, 15265519672173, 14283159085861
Offset: 1
Keywords
Examples
For N=4 we have 53 solutions, because {1,2,3,4} together with any proper subset yields 2*15-1 = 29 valid pairs, and a further 24 pairs can be obtained from {1,2} & {1,3}, by substituting the numbers with any permutation of (1,2,3,4).
Programs
-
Mathematica
Sum[Total[s!/(c!(#-c)!(s c/#-c)!(s - # - s c/# + c)!) &/@Select[Divisors[s c], c <= # <= s &]], {c,1,s}] (* "Eigenray", see link, Feb 15 2009 *)