This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158405 #80 Nov 28 2020 15:53:28 %S A158405 1,1,3,1,3,5,1,3,5,7,1,3,5,7,9,1,3,5,7,9,11,1,3,5,7,9,11,13,1,3,5,7,9, %T A158405 11,13,15,1,3,5,7,9,11,13,15,17,1,3,5,7,9,11,13,15,17,19,1,3,5,7,9,11, %U A158405 13,15,17,19,21,1,3,5,7,9,11,13,15,17,19,21,23 %N A158405 Triangle T(n,m) = 1+2*m of odd numbers read along rows, 0<=m<n. %C A158405 Row sums are n^2 = A000290(n). %C A158405 The triangle sums, see A180662 for their definitions, link this triangle of odd numbers with seventeen different sequences, see the crossrefs. The knight sums Kn14 - Kn110 have been added. - _Johannes W. Meijer_, Sep 22 2010 %C A158405 A208057 is the eigentriangle of A158405 such that as infinite lower triangular matrices, A158405 * A208057 shifts the latter, deleting the right border of 1's. - _Gary W. Adamson_, Feb 22 2012 %C A158405 T(n,k) = A099375(n-1,n-k), 1<=k<=n. [_Reinhard Zumkeller_, Mar 31 2012] %H A158405 Seiichi Manyama, <a href="/A158405/b158405.txt">Rows n = 1..140, flattened</a> %H A158405 Daniel Erman, <a href="https://www.youtube.com/watch?v=uCsD3ZGzMgE">The Josephus Problem</a>, Numberphile video (2016) %H A158405 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [of] Integer Sequences And Pairing Functions</a> arXiv:1212.2732 [math.CO], 2012. %H A158405 <a href="/index/J#Josephus">Index entries for sequences related to the Josephus Problem</a> %F A158405 a(n) = 2*i-1, where i = n-t(t+1)/2, t = floor((-1+sqrt(8*n-7))/2). - _Boris Putievskiy_, Feb 03 2013 %F A158405 a(n) = 2*A002262(n-1) + 1. - _Eric Werley_, Sep 30 2015 %e A158405 The triangle contains the first n odd numbers in row n: %e A158405 1; %e A158405 1,3; %e A158405 1,3,5; %e A158405 1,3,5,7; %e A158405 From _Seiichi Manyama_, Dec 02 2017: (Start) %e A158405 | a(n) | | A000290(n) %e A158405 ----------------------------------------------------------------- %e A158405 0| (= 0) %e A158405 1| 1 = 1/3 * ( 3) (= 1) %e A158405 2| 1 + 3 = 1/3 * ( 5 + 7) (= 4) %e A158405 3| 1 + 3 + 5 = 1/3 * ( 7 + 9 + 11) (= 9) %e A158405 4| 1 + 3 + 5 + 7 = 1/3 * ( 9 + 11 + 13 + 15) (= 16) %e A158405 5| 1 + 3 + 5 + 7 + 9 = 1/3 * (11 + 13 + 15 + 17 + 19) (= 25) %e A158405 (End) %t A158405 Table[2 Range[1, n] - 1, {n, 12}] // Flatten (* _Michael De Vlieger_, Oct 01 2015 *) %o A158405 (Haskell) %o A158405 a158405 n k = a158405_row n !! (k-1) %o A158405 a158405_row n = a158405_tabl !! (n-1) %o A158405 a158405_tabl = map reverse a099375_tabl %o A158405 -- _Reinhard Zumkeller_, Mar 31 2012 %o A158405 (PARI) a(n) = 2*(n-floor((-1+sqrt(8*n-7))/2)*(floor((-1+sqrt(8*n-7))/2)+1)/2)-1; %o A158405 vector(100, n, a(n)) \\ _Altug Alkan_, Oct 01 2015 %Y A158405 Cf. A129326, A099375, A005408. %Y A158405 Triangle sums (see the comments): A000290 (Row1; Kn11 & Kn4 & Ca1 & Ca4 & Gi1 & Gi4); A000027 (Row2); A005563 (Kn12); A028347 (Kn13); A028560 (Kn14); A028566 (Kn15); A098603 (Kn16); A098847 (Kn17); A098848 (Kn18); A098849 (Kn19); A098850 (Kn110); A000217 (Kn21. Kn22, Kn23, Fi2, Ze2); A000384 (Kn3, Fi1, Ze3); A000212 (Ca2 & Ze4); A000567 (Ca3, Ze1); A011848 (Gi2); A001107 (Gi3). - _Johannes W. Meijer_, Sep 22 2010 %Y A158405 Cf. A063656, A063657, A208057, A292610, A292611. %K A158405 nonn,tabl,easy %O A158405 1,3 %A A158405 _Paul Curtz_, Mar 18 2009 %E A158405 Edited by _R. J. Mathar_, Oct 06 2009