This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158442 #6 Feb 03 2019 06:47:46 %S A158442 2,1,6,3,2,1,24,12,8,6,3,2,120,60,40,30,24,12,8,6,720,360,240,180,144, %T A158442 120,60,40,30,24,5040,2520,1680,1260,1008,840,720,360,240,180,144,120, %U A158442 40320,20160,13440,10080,8064,6720,5760,5040,2520,1680,1260,1008,840,720,362880 %N A158442 Triangle T(n,k) = [x^k] n!*(n+1+x^n)*Sum_{i=0..n-1} x^i/(i+1). %C A158442 The coefficient in front of x^k of the polynomial n!*(n+1+x^n)*Sum_{i=0..n-1} x^i/(i+1), columns k=0..2n-1. %F A158442 Row sums: (n+2)*A000254(n). %e A158442 The triangle starts %e A158442 2, 1; %e A158442 6, 3, 2, 1; %e A158442 24, 12, 8, 6, 3, 2; %e A158442 120, 60, 40, 30, 24, 12, 8, 6; %p A158442 P := proc(n,k) (n+1+x^n)*add( x^i/(i+1),i=0..n-1) ; coeftayl(expand(%),x=0,k) ; end: %p A158442 T := proc(n,k) n!*P(n,k) ; end: %p A158442 for n from 1 to 10 do for k from 0 to 2*n-1 do printf("%d,",T(n,k)) ; od: od: # _R. J. Mathar_, Apr 09 2009 %Y A158442 Cf. A130679 (table Q), A158442. %K A158442 nonn,easy,tabf %O A158442 1,1 %A A158442 _Paul Curtz_, Mar 19 2009 %E A158442 Edited by _R. J. Mathar_, Apr 09 2009