This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158459 #55 Dec 12 2023 08:04:48 %S A158459 0,3,2,1,0,3,2,1,0,3,2,1,0,3,2,1,0,3,2,1,0,3,2,1,0,3,2,1,0,3,2,1,0,3, %T A158459 2,1,0,3,2,1,0,3,2,1,0,3,2,1,0,3,2,1,0,3,2,1,0,3,2,1,0,3,2,1,0,3,2,1, %U A158459 0,3,2,1,0,3,2,1,0,3,2,1,0,3,2,1,0,3,2 %N A158459 Period 4: repeat [0, 3, 2, 1]. %H A158459 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,1). %F A158459 G.f.: x*(x^2+2*x+3)/(1-x^4). %F A158459 a(n) = A102370(n) (mod 4). %F A158459 a(n) = 3/2-(-1)^n/2+sin(n*Pi/2)-cos(n*Pi/2). - _Richard Choulet_, Apr 07 2009 %F A158459 a(n) = -n (mod 4). - _M. F. Hasler_, Jan 13 2012; formula simplified by _Arkadiusz Wesolowski_, Jul 03 2012 %F A158459 a(n) = (3-(-1)^n-2*I^(n*(n+1)))/2. - _Bruno Berselli_, Jul 03 2012 %F A158459 a(n) = floor(107/3333*10^(n+1)) mod 10. - _Hieronymus Fischer_, Jan 04 2013 %F A158459 a(n) = floor(19/85*4^(n+1)) mod 4. - _Hieronymus Fischer_, Jan 04 2013 %F A158459 a(n) = ((n+1) mod 4)+(-1)^((n+1) mod 4). - _Wesley Ivan Hurt_, May 18 2014 %F A158459 a(n) = 3*n mod 4. - _Gary Detlefs_, May 24 2014 %F A158459 a(n) = a(n-4) for n>3. - _Wesley Ivan Hurt_, Jul 09 2016 %p A158459 seq(op([0, 3, 2, 1]), n=0..50); # _Wesley Ivan Hurt_, Jul 09 2016 %t A158459 Flatten@Table[{0, 3, 2, 1}, {22}] (* _Arkadiusz Wesolowski_, Jul 03 2012 *) %o A158459 (PARI) A158459(n)=(-n)%4 \\ _M. F. Hasler_, Jan 13 2012 %o A158459 (Haskell) %o A158459 a158459 = (`mod` 4) . negate %o A158459 a158459_list = cycle [0,3,2,1] -- _Reinhard Zumkeller_, Feb 22 2013 %o A158459 (Magma) &cat [[0, 3, 2, 1]^^30]; // _Wesley Ivan Hurt_, Jul 09 2016 %Y A158459 Cf. A010873, A102370. %K A158459 nonn,easy %O A158459 0,2 %A A158459 _Philippe Deléham_, Mar 19 2009 %E A158459 Better definition from _M. F. Hasler_, Jan 13 2012