This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158465 #14 Dec 13 2014 00:48:50 %S A158465 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,16,18,0,0,32,100,0,0,424,510,0,0, %T A158465 2792,5988,0,0,29058,45106,0,0,276828,473854,0,0,2455340,4777436,0,0, %U A158465 27466324,46429640,0,0,280395282,526489336,0,0,3193589950,5661226928,0,0 %N A158465 Number of solutions to +-1+-2^4+-3^4+-4^4...+-n^4=0. %C A158465 Constant term in the expansion of (x + 1/x)(x^16 + 1/x^16)..(x^n^4 + 1/x^n^4). %C A158465 a(n)=0 for any n=1 (mod 4) or n=2 (mod 4). %C A158465 Andrica & Tomescu give a more general integral formula than the one below. The asymptotic formula below is a conjecture by Andrica & Ionascu; it remains unproven. - _Jonathan Sondow_, Nov 11 2013 %H A158465 D. Andrica and E. J. Ionascu, <a href="http://www.dorinandrica.ro/files/presentation-INTEGERS-2013.pdf">Variations on a result of Erdős and Surányi</a>INTEGERS 2013 slides. %H A158465 Dorin Andrica and Ioan Tomescu, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL5/Tomescu/tomescu4.html">On an Integer Sequence Related to a Product of Trigonometric Functions, and Its Combinatorial Relevance</a>, J. Integer Sequences, 5 (2002), Article 02.2.4. %F A158465 Integral representation: a(n) = ((2^n)/Pi)*int_0^pi prod_{k=1}^n cos(x*k^4) dx. %F A158465 Asymptotic formula: a(n) = (2^n)*sqrt(18/(Pi*n^9))*(1+o(1)) as n->infinity; n=-1 or 0 (mod 4). %e A158465 For n=16 the a(16) = 2 solutions are +1 +16 +81 +256 -625 -1296 -2401 +4096 +6561 +10000 +14641 +20736 -28561 -38416 -50625 +65536 = 0 and the opposite. %p A158465 N:=32: p:=1 a:=[]: for n from 32 to N do p:=expand %p A158465 (p*(x^(n^4)+x^(-n^4))): a:=[op(a), coeff(p,x,0)]: od:a; %Y A158465 Cf. A063865, A158092, A158118, A158380, A019568. %Y A158465 A111253(n) = a(n)/2. - _Alois P. Heinz_, Oct 31 2011 %K A158465 nonn %O A158465 1,16 %A A158465 _Pietro Majer_, Mar 19 2009 %E A158465 a(35)-a(58) from _Alois P. Heinz_, Oct 31 2011