cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158494 Boundary area of the T-square fractal.

This page as a plain text file.
%I A158494 #22 Jan 03 2024 23:47:25
%S A158494 4,24,80,248,768,2360,7200,21848,66048,199160,599520,1802648,5416128,
%T A158494 16264760,48827040,146546648,439771008,1319575160,3959249760,
%U A158494 11878797848,35638490688,106919666360,320767387680,962318940248,2886990375168,8661038234360
%N A158494 Boundary area of the T-square fractal.
%C A158494 Consider the n-th iteration of the T-square fractal (as defined in the links) drawn on an integer lattice scaled so that the shortest edge on the boundary of the fractal has unit length a(n)gives the number of lattice squares in the unshaded region that are adjacent to a square in the shaded region. For n=1 there is a single shaded square and a(1) counts the 4 adjacent unshaded squares. Proposed by Simone Severini.
%H A158494 Colin Barker, <a href="/A158494/b158494.txt">Table of n, a(n) for n = 1..1000</a>
%H A158494 Wikipedia, <a href="http://en.wikipedia.org/wiki/T-square_(fractal)">T-square (fractal)</a>
%H A158494 Good math, bad math, <a href="http://scienceblogs.com/goodmath/2007/08/geometric_lsystems.php">Geometric L-systems</a>
%H A158494 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-11,6).
%F A158494 a(1)=4, a(2)=24, a(3)=80; for n>3, a(n) = 3*a(n-1) + 2^n - 8.
%F A158494 G.f.: 4*x*(1 - 5*x^2 + 2*x^3 + 4*x^4) / ((1 - x)*(1 - 2*x)*(1 - 3*x)). - _Jaume Oliver Lafont_, Mar 21 2009
%F A158494 From _Colin Barker_, May 22 2017: (Start)
%F A158494 a(n) = 4 - 2^(n+1) + 92*3^(n-3) for n>2.
%F A158494 a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>5. (End)
%t A158494 CoefficientList[Series[4*(1 - 5*x^2 + 2*x^3 + 4*x^4)/((1 - x)*(1 - 2*x)*(1 - 3*x)), {x, 0, 30}], x] (* _Wesley Ivan Hurt_, Jan 20 2017 *)
%o A158494 (PARI) a(n)=4*((n==1)+(n==2)*6+(n>=3)*(1-2^(n-1)+23*3^(n-3))) \\ _Jaume Oliver Lafont_, Mar 22 2009
%o A158494 (PARI) Vec(4*x*(1-5*x^2+2*x^3+4*x^4) / ((1-x)*(1-2*x)*(1-3*x)) + O(x^30)) \\ _Colin Barker_, May 22 2017
%Y A158494 Cf. A000392.
%K A158494 nonn,easy
%O A158494 1,1
%A A158494 _Andrew V. Sutherland_, Mar 20 2009
%E A158494 Edited by _Charles R Greathouse IV_, Oct 28 2009