cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158502 Array T(n,k) read by antidiagonals: number of primitive polynomials of degree k over GF(prime(n)).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 4, 4, 2, 4, 8, 20, 8, 6, 4, 16, 36, 48, 22, 6, 8, 24, 144, 160, 280, 48, 18, 6, 48, 240, 960, 1120, 720, 156, 16, 10, 48, 816, 1536, 12880, 6048, 5580, 320, 48, 12, 80, 756, 5376, 24752, 62208, 37856, 14976, 1008, 60, 8, 96, 1560, 8640, 141984, 224640, 1087632, 192000, 99360
Offset: 1

Views

Author

R. J. Mathar, Aug 29 2011

Keywords

Examples

			The array starts in row n=1 with columns k>=1 as
1, 1,  2,     2,     6,      6,     18,     16,      48,       60,  A011260
1, 2,  4,     8,    22,     48,    156,    320,    1008,     2640,  A027385
2, 4,  20,   48,   280,    720,   5580,  14976,   99360,   291200,  A027741
2, 8,  36,  160,  1120,   6048,  37856, 192000, 1376352,  8512000,  A027743
4,16, 144,  960, 12880,  62208,1087632,7027200,85098816,691398400,  A319166
4,24, 240, 1536, 24752, 224640,2988024,21934080
		

Crossrefs

Programs

  • Maple
    A := proc(n,k) local p ; p := ithprime(n) ; if k = 0 then 1; else numtheory[phi](p^k-1)/k ; end if;end proc:
  • Mathematica
    t[n_, k_] := If[k == 0, 1, p = Prime[n]; EulerPhi[p^k - 1]/k]; Flatten[ Table[t[n - k + 1, k], {n, 1, 11}, {k, 1, n}]] (* Jean-François Alcover, Jun 04 2012, after Maple *)

Formula

T(n,k) = A000010(p^k-1)/k = A369291(k, p) with p=A000040(n).