A158502 Array T(n,k) read by antidiagonals: number of primitive polynomials of degree k over GF(prime(n)).
1, 1, 1, 2, 2, 2, 2, 4, 4, 2, 4, 8, 20, 8, 6, 4, 16, 36, 48, 22, 6, 8, 24, 144, 160, 280, 48, 18, 6, 48, 240, 960, 1120, 720, 156, 16, 10, 48, 816, 1536, 12880, 6048, 5580, 320, 48, 12, 80, 756, 5376, 24752, 62208, 37856, 14976, 1008, 60, 8, 96, 1560, 8640, 141984, 224640, 1087632, 192000, 99360
Offset: 1
Examples
The array starts in row n=1 with columns k>=1 as 1, 1, 2, 2, 6, 6, 18, 16, 48, 60, A011260 1, 2, 4, 8, 22, 48, 156, 320, 1008, 2640, A027385 2, 4, 20, 48, 280, 720, 5580, 14976, 99360, 291200, A027741 2, 8, 36, 160, 1120, 6048, 37856, 192000, 1376352, 8512000, A027743 4,16, 144, 960, 12880, 62208,1087632,7027200,85098816,691398400, A319166 4,24, 240, 1536, 24752, 224640,2988024,21934080
Links
- Vincenzo Librandi, Rows n = 1..50, flattened
Programs
-
Maple
A := proc(n,k) local p ; p := ithprime(n) ; if k = 0 then 1; else numtheory[phi](p^k-1)/k ; end if;end proc:
-
Mathematica
t[n_, k_] := If[k == 0, 1, p = Prime[n]; EulerPhi[p^k - 1]/k]; Flatten[ Table[t[n - k + 1, k], {n, 1, 11}, {k, 1, n}]] (* Jean-François Alcover, Jun 04 2012, after Maple *)