This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158503 #18 May 09 2025 23:11:47 %S A158503 1,-9,-30,-20,945,8028,19404,18480,6160,-1403325,-20545650,-94064328, %T A158503 -200166120,-220540320,-122522400,-27227200,820945125,17610977880, %U A158503 124110533448,431932849920,857710030320,1023307084800,728175127680,285558873600,47593145600 %N A158503 Triangle read by rows: numerators of coefficients of the polynomials phi_s(t) used for asymptotic elementary function expansions of parabolic cylinder functions U(a, x), V(a, x). %C A158503 Each polynomial phi_s(t) has 2s+1 terms. The signs of the polynomials alternate with s with positive coefficients for s even and negative coefficients for s odd. %D A158503 Amparo Gil, Javier Segura and Nico M. Temme, Computing the real parabolic cylinder functions U(a, x), V(a, x), ACM TOMS, Volume 32, Issue 1 (March 2006), pages 70-101. %D A158503 Amparo Gil, Javier Segura and Nico M. Temme, Numerical Methods for Special Functions, SIAM, 2007, pages 378-385. See Equations 12.121 through 12.125 %H A158503 Chris Kormanyos, <a href="/A158503/b158503.txt">Rows s = 0..122, flattened</a> %F A158503 phi_s+1(t) = ( -4*t^2*(t + 1)^2 * d/dt[phi_s(t)] ) - (1/4)*Integral_{T=0..t} (20*T^2 + 20*T + 3)*phi_s(T) dT %F A158503 phi_0 = 1, phi_-1 = 0 %e A158503 The polynomials phi_0, phi_1, phi_2 and phi_3 are: %e A158503 1 %e A158503 -(t/12)*(9 + 30*t + 20*t^2) %e A158503 (t^2/288)*(945 + 8028*t + 19404*t^2 + 18480*t^3 + 6160*t^4) %e A158503 -(t^3/51840)*(1403325 + 20545650*t + 94064328*t^2 + 200166120*t^3 + 220540320*t^4 + 122522400*t^5 + 27227200*t^6) %t A158503 pktop = {1, -9, -30, -20}; %t A158503 pkbot = {1, 12}; %t A158503 p = (-t/12) (9 + (30 t) + (20 (t^2))); %t A158503 Do[pk = -(4 (t^2) ((t + 1)^2)) D[p, t] - ((1/4) Integrate[((20 (t^2)) + (20 t) + 3) p, {t, 0, t}]); %t A158503 p = Together[Simplify[pk]]; %t A158503 Do[pktop = Append[pktop, Coefficient[Expand[Numerator[p]], t^n]], {n, k, (2 k) + k, 1}]; %t A158503 pkbot = Append[pkbot, Denominator[p]]; %t A158503 Print[k], {k, 2, 10, 1}]; %Y A158503 For denominators see A001164. %K A158503 sign,tabf %O A158503 0,2 %A A158503 Chris Kormanyos (ckormanyos(AT)yahoo.com), Mar 20 2009