This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158522 #17 Jun 22 2024 21:50:13 %S A158522 1,-2,-2,2,-2,4,-2,-2,2,4,-2,-4,-2,4,4,2,-2,-4,-2,-4,4,4,-2,4,2,4,-2, %T A158522 -4,-2,-8,-2,-2,4,4,4,4,-2,4,4,4,-2,-8,-2,-4,-4,4,-2,-4,2,-4,4,-4,-2, %U A158522 4,4,4,4,4,-2,8,-2,4,-4,2,4,-8,-2,-4,4,-8,-2,-4,-2,4,-4,-4,4,-8,-2,-4,2,4,-2 %N A158522 Dirichlet inverse of number of unitary divisors of n (A034444). %C A158522 Abs{a(n)} = A034444(n). Examples of Dirichlet convolutions with function a(n), i.e., b(n) = Sum_{d|n} a(d)*c(n/d): a(n) * A034444(n) = A063524(n), a(n) * A000005(n) = A010052(n), a(n) * A000027(n) = A074722(n), a(n) * A000012(n) = A008836(n). %C A158522 Möbius transform of Liouville's lambda function (A008836). - _Wesley Ivan Hurt_, Jun 22 2024 %H A158522 G. C. Greubel, <a href="/A158522/b158522.txt">Table of n, a(n) for n = 1..1000</a> %F A158522 a(n) = (-1)^A001222(n)*A034444(n) = (-1)^A001222(n)*2^A001221(n), for n >= 2. %F A158522 Multiplicative with a(p^e) = 2*(-1)^e, p prime, e>0. a(p^0) = 1. %F A158522 Dirichlet g.f.: zeta(2s)/(zeta(s))^2. - _R. J. Mathar_, Apr 02 2011 %F A158522 a(n) = Sum_{d|n} (-1)^Omega(d) * mu(n/d). - _Wesley Ivan Hurt_, Jun 22 2024 %e A158522 a(60) = a(2^2*3*5) = [(-1)^2*2]*[(-1)^1*2]*[(-1)^1*2] = 2*(-2)*(-2) = 8. %t A158522 Table[LiouvilleLambda[n] 2^PrimeNu[n], {n, 1, 50}] (* _Geoffrey Critzer_, Mar 07 2015 *) %o A158522 (PARI) for(n=1,20, print1((-1)^bigomega(n)* 2^omega(n), ", ")) \\ _G. C. Greubel_, May 21 2017 %Y A158522 Cf. A034444, A063524, A000005, A010052, A000027, A074722, A001222, A001221, A000040, A006881, A120944, A000961. %K A158522 sign,mult %O A158522 1,2 %A A158522 _Jaroslav Krizek_, Mar 20 2009