cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158525 Number of connected spanning subgraphs and number of forests of the wheel graph W_n.

This page as a plain text file.
%I A158525 #21 Apr 15 2025 13:04:22
%S A158525 38,134,462,1582,5406,18462,63038,215230,734846,2508926,8566014,
%T A158525 29246206,99852798,340918782,1163969534,3974040574,13568223230,
%U A158525 46324811774,158162800638,540001579006,1843680714750,6294719700990,21491517374462,73376630095870,250523485634558
%N A158525 Number of connected spanning subgraphs and number of forests of the wheel graph W_n.
%C A158525 The wheel graph W_n has n vertices and 2n-2 edges. A single vertex is connected to all vertices of an (n-1)-cycle.
%H A158525 Vincenzo Librandi, <a href="/A158525/b158525.txt">Table of n, a(n) for n = 4..1000</a>
%H A158525 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WheelGraph.html">Wheel Graph</a>
%H A158525 Wikipedia, <a href="https://en.wikipedia.org/wiki/Wheel_graph">Wheel graph</a>
%H A158525 Yaohui Zhu, Kaiming Sun, Zhengdong Luo, and Lingfeng Wang, <a href="https://doi.org/10.1609/aaai.v39i2.32162">Progressive Self-Learning for Domain Adaptation on Symbolic Regression of Integer Sequences</a>, Proc. 39th AAAI Conf. Artif. Intel. (2025) Vol. 39, No. 1, 1692-1699. See p. 1698.
%H A158525 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,-6,2).
%F A158525 G.f.: (38-56*x+20*x^2)*x^4 / (6*x^2+1-5*x-2*x^3).
%F A158525 a(n) = 2 * A035344(n-2).
%p A158525 a:= n-> `if`(n<4, 0, (Matrix([[5, 1, 0], [ -6, 0, 1], [2, 0, 0]])^n)[3, 2]): seq(a(n), n=4..30);
%t A158525 CoefficientList[Series[((1 / x^4) (38 - 56 x + 20 x^2) x^4 / (6 x^2 + 1 - 5 x - 2 x^3)), {x, 0, 50}], x] (* _Vincenzo Librandi_, Jun 06 2013 *)
%Y A158525 Cf. A035344.
%K A158525 nonn,easy
%O A158525 4,1
%A A158525 _Alois P. Heinz_, Mar 20 2009