This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158562 #33 Jan 16 2025 08:47:54 %S A158562 240,1008,2288,4080,6384,9200,12528,16368,20720,25584,30960,36848, %T A158562 43248,50160,57584,65520,73968,82928,92400,102384,112880,123888, %U A158562 135408,147440,159984,173040,186608,200688,215280,230384,246000,262128,278768,295920,313584,331760 %N A158562 a(n) = 256*n^2 - 16. %C A158562 The identity (32*n^2 - 1)^2 - (256*n^2 - 16)*(2*n)^2 = 1 can be written as A158563(n)^2 - a(n)*A005843(n)^2 = 1. [rewritten by _R. J. Mathar_, Oct 16 2009] %H A158562 Vincenzo Librandi, <a href="/A158562/b158562.txt">Table of n, a(n) for n = 1..10000</a> %H A158562 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A158562 G.f.: 16*x*(-15 - 18*x + x^2)/(x-1)^3. %F A158562 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). %F A158562 From _Amiram Eldar_, Mar 09 2023: (Start) %F A158562 Sum_{n>=1} 1/a(n) = (4 - Pi)/128. %F A158562 Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)*Pi - 4)/128. (End) %F A158562 From _Elmo R. Oliveira_, Jan 16 2025: (Start) %F A158562 E.g.f.: 16*(exp(x)*(16*x^2 + 16*x - 1) + 1). %F A158562 a(n) = 16*A141759(n-1). (End) %t A158562 16(16Range[40]^2-1) (* or *) LinearRecurrence[{3,-3,1},{240,1008,2288},40] (* _Harvey P. Dale_, Sep 13 2011 *) %o A158562 (Magma) I:=[240,1008,2288]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // _Vincenzo Librandi_, Feb 15 2012 %o A158562 (PARI) for(n=1, 50, print1(256*n^2-16", ")); \\ _Vincenzo Librandi_, Feb 15 2012 %Y A158562 Cf. A005843, A141759, A158563. %K A158562 nonn,easy %O A158562 1,1 %A A158562 _Vincenzo Librandi_, Mar 21 2009