This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158613 #24 Sep 08 2022 08:45:43 %S A158613 1,0,0,1,-1,-1,1,-2,-4,1,-3,-9,1,-4,-16,1,-5,-25,1,-6,-36,1,-7,-49,1, %T A158613 -8,-64,1,-9,-81,1,-10,-100,1,-11,-121,1,-12,-144,1,-13,-169,1,-14, %U A158613 -196,1,-15,-225,1,-16,-256,1,-17,-289,1,-18,-324,1,-19,-361,1,-20,-400,1,-21,-441 %N A158613 Expansion of (1 - 2*x^3 - x^4 - x^5 + x^6 + x^7 - x^8)/(1 - x^3)^3. %C A158613 The sequence is given by the successive triples (1, -m, -m^2) with m = 0, 1, 2, 3, ... - _Bruno Berselli_, Aug 23 2018 %H A158613 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,3,0,0,-3,0,0,1). %F A158613 From _Bruno Berselli_, Aug 23 2018: (Start) %F A158613 G.f.: (1 - 2*x^3 - x^4 - x^5 + x^6 + x^7 - x^8)/((1 - x)^3*(1 + x + x^2)^3). %F A158613 a(n) = 3*a(n-3) - 3*a(n-6) + a(n-9) for n>8. %F A158613 a(n) = -(-1)^((n+1) mod 3)*floor(n/3)^(n mod 3). (End) %e A158613 As array: %e A158613 1, 0, 0; %e A158613 1, -1, -1; %e A158613 1, -2, -4; %e A158613 1, -3, -9; %e A158613 1, -4, -16; %e A158613 1, -5, -25; %e A158613 1, -6, -36; %e A158613 1, -7, -49; %e A158613 1, -8, -64; %e A158613 1, -9, -81; %e A158613 1, -10, -100 etc. %t A158613 CoefficientList[Series[(1-2x^3-x^4-x^5+x^6+x^7-x^8)/(1-x^3)^3,{x,0,100}],x] (* or *) LinearRecurrence[{0,0,3,0,0,-3,0,0,1},{1,0,0,1,-1,-1,1,-2,-4},100] (* _Harvey P. Dale_, Nov 22 2021 *) %o A158613 (Magma) &cat [[1,-n,-n^2]: n in [0..25]]; // _Bruno Berselli_, Aug 23 2018 %Y A158613 Cf. A000463, A156133, A234357. %K A158613 sign,tabf,easy,less %O A158613 0,8 %A A158613 _Roger L. Bagula_, Mar 22 2009 %E A158613 Edited, new name, and a(1)-a(2) added by _Bruno Berselli_, Aug 23 2018