This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158625 #82 Aug 02 2024 12:29:00 %S A158625 5,2,1,3,0,2,3,3,0,4,3,1,1,3,1,1,2,4,2,1,0,3,1,3,3,0,0,0,2,3,1,4,1,0, %T A158625 2,1,0,3,4,3,0,2,1,2,2,1,1,4,4,3,4,0,2,0,4,0,2,2,1,1,1,1,1,0,1,0,0,1, %U A158625 1,3,3,2,0,1,1,4,4,2,0,1,4,2,4,1,2,0,4 %N A158625 Lower limit of backward value of 5^n. %C A158625 Digits are all in {0,1,2,3,4} after the first term. %C A158625 The upper limit is A158624, 0.5265679578796997657885576975995789586775656... %C A158625 The sequence is not eventually periodic. Assuming any period results in a condition a(1)=0 mod 10 which contradicts a(1)=5. - _Cezary Glowacz_, Jul 22 2024 %H A158625 Jon E. Schoenfield, <a href="/A158625/b158625.txt">Table of n, a(n) for n = 1..3000</a> %F A158625 a(n) >= 0 and is the minimum satisfying (Sum_{i=1..n} a(i)*10^(i-1)) == 0 (mod 5^n), for n >= 2. - _Cezary Glowacz_, Jul 24 2024 %e A158625 5^3 = 125 so the backward value is 0.521, 5^10 = 9765625, so backward value is 0.5265679. The lower limit of all values is a constant, which appears to be 0.521302330431131124210313300023141021034302... %e A158625 From _N. J. A. Sloane_, May 11 2018: (Start) %e A158625 To describe this another way: write down the decimal expansion of powers of 5: %e A158625 1 %e A158625 5 %e A158625 25 %e A158625 125 %e A158625 625 %e A158625 3125 %e A158625 ... %e A158625 keep going forever. %e A158625 Write them backwards: %e A158625 1 %e A158625 5 %e A158625 52 %e A158625 526 %e A158625 5213 %e A158625 ... %e A158625 After a while the beginning digits are all the same. %e A158625 That's the sequence. (End) %o A158625 (Python) %o A158625 # lower limit of backward sequence of 5^n %o A158625 a,i=5,0; x=a %o A158625 while i < 100: %o A158625 i+=1; print(x, end=',') %o A158625 x=(-a//pow(5,i)*pow(3,i))%5; a+=x*pow(10,i) %o A158625 # _Cezary Glowacz_, Jul 29 2024 %o A158625 (Magma) D:=87; e:=6; for d in [2..D-1] do t:=Modexp(5,e,10^(d+1)); if t div 10^d ge 5 then e+:=2^(d-2); end if; end for; t:=Modexp(5,e,10^D); IntegerToSequence(t,10); // _Jon E. Schoenfield_, Feb 05 2018 %Y A158625 Cf. A158624, A004094, A023415, A145679. %K A158625 cons,nonn,nice,base %O A158625 1,1 %A A158625 _Simon Plouffe_, Mar 23 2009