This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158659 #27 Jan 15 2025 22:09:06 %S A158659 28,812,3164,7084,12572,19628,28252,38444,50204,63532,78428,94892, %T A158659 112924,132524,153692,176428,200732,226604,254044,283052,313628, %U A158659 345772,379484,414764,451612,490028,530012,571564,614684,659372,705628,753452,802844,853804,906332 %N A158659 a(n) = 784*n^2 + 28. %C A158659 The identity (56*n^2 + 1)^2 - (784*n^2 + 28)*(2*n)^2 = 1 can be written as A158660(n)^2 - a(n)*A005843(n)^2 = 1. %H A158659 Vincenzo Librandi, <a href="/A158659/b158659.txt">Table of n, a(n) for n = 0..10000</a> %H A158659 Vincenzo Librandi, <a href="https://web.archive.org/web/20090309225914/http://mathforum.org/kb/message.jspa?messageID=5785989&tstart=0">X^2-AY^2=1</a>, Math Forum, 2007. [Wayback Machine link] %H A158659 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A158659 G.f.: -28*(1 + 26*x + 29*x^2)/(x-1)^3. %F A158659 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). %F A158659 From _Amiram Eldar_, Mar 20 2023: (Start) %F A158659 Sum_{n>=0} 1/a(n) = (coth(Pi/(2*sqrt(7)))*Pi/(2*sqrt(7)) + 1)/56. %F A158659 Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/(2*sqrt(7)))*Pi/(2*sqrt(7)) + 1)/56. (End) %F A158659 From _Elmo R. Oliveira_, Jan 15 2025: (Start) %F A158659 E.g.f.: 28*exp(x)*(1 + 28*x + 28*x^2). %F A158659 a(n) = 28*A158556(n). (End) %t A158659 LinearRecurrence[{3, -3, 1}, {28, 812, 3164}, 50] (* _Vincenzo Librandi_, Feb 17 2012 *) %t A158659 784 Range[0,40]^2+28 (* _Harvey P. Dale_, Nov 01 2024 *) %o A158659 (Magma) I:=[28, 812, 3164]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // _Vincenzo Librandi_, Feb 17 2012 %o A158659 (PARI) for(n=0, 40, print1(784*n^2 + 28", ")); \\ _Vincenzo Librandi_, Feb 17 2012 %Y A158659 Cf. A005843, A158556, A158660. %K A158659 nonn,easy %O A158659 0,1 %A A158659 _Vincenzo Librandi_, Mar 23 2009 %E A158659 Comment rephrased and redundant formula replaced by _R. J. Mathar_, Oct 19 2009