cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158706 Expansion of e.g.f.: exp(t*x)/(1 - x/t - t^2 * x^2).

This page as a plain text file.
%I A158706 #18 Dec 01 2021 01:17:57
%S A158706 1,1,0,1,2,0,2,0,3,6,0,6,0,15,0,7,24,0,24,0,84,0,52,0,37,120,0,120,0,
%T A158706 540,0,380,0,485,0,141,720,0,720,0,3960,0,3000,0,5430,0,2406,0,1111,
%U A158706 5040,0,5040,0,32760,0,26040,0,60690,0,32802,0,28147,0,5923
%N A158706 Expansion of e.g.f.: exp(t*x)/(1 - x/t - t^2 * x^2).
%H A158706 G. C. Greubel, <a href="/A158706/b158706.txt">Rows n = 0..50 of the irregular triangle, flattened</a>
%F A158706 T(n, k) = coefficients of the expansion : p(x,t) = exp(t*x)/(1 - x/t - t^2* x^2).
%F A158706 T(n, k) = coefficients of the series : Sum_{s=0..n} Sum_{j=0..floor(s/2)} (n!/(n-s)!)*A011973(s, j)*x^(4*j+2*n-2*s). - _G. C. Greubel_, Nov 30 2021
%e A158706 Irregular triangle begins as:
%e A158706      1;
%e A158706      1, 0,    1;
%e A158706      2, 0,    2, 0,     3;
%e A158706      6, 0,    6, 0,    15, 0,     7;
%e A158706     24, 0,   24, 0,    84, 0,    52, 0,    37;
%e A158706    120, 0,  120, 0,   540, 0,   380, 0,   485, 0,   141;
%e A158706    720, 0,  720, 0,  3960, 0,  3000, 0,  5430, 0,  2406, 0,  1111;
%e A158706   5040, 0, 5040, 0, 32760, 0, 26040, 0, 60690, 0, 32802, 0, 28147, 0, 5923;
%t A158706 (* First program *)
%t A158706 Table[CoefficientList[n!*t^n*SeriesCoefficient[Series[Exp[t*x]/(1 -x/t -t^2*x^2), {x,0,20}], n], t], {n,0,10}]//Flatten
%t A158706 (* Second program *)
%t A158706 Table[CoefficientList[Series[Sum[Sum[GegenbauerC[k, (s+1)/2 -k, 1]*x^(4*k+2*n - 2*s)*(n!/(n-s)!), {k,0,Floor[s/2]}], {s,0,n}], {x,0,20}], x], {n,0,10}] (* _G. C. Greubel_, Nov 30 2021 *)
%o A158706 (Sage)
%o A158706 @CachedFunction
%o A158706 def A011973(n,k): return 0 if (k<0 or k>(n//2)) else binomial(n-k, k)
%o A158706 def f(n,x): return sum( sum( (A011973(s,j)/factorial(n-s))*x^(4*j+2*n-2*s) for j in (0..(s//2)) ) for s in (0..n) )
%o A158706 def A158706(n,k): return factorial(n)*( f(n,x) ).series(x,2*n+1).list()[k]
%o A158706 flatten([[A158706(n,k) for k in (0..2*n)] for n in (0..12)]) # _G. C. Greubel_, Nov 30 2021
%Y A158706 Cf. A011973, A110313 (row sums).
%K A158706 nonn,tabf
%O A158706 0,5
%A A158706 _Roger L. Bagula_, Mar 24 2009
%E A158706 Edited by _G. C. Greubel_, Nov 30 2021