This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158757 #13 Feb 06 2023 12:46:22 %S A158757 1,0,0,1,2,0,0,0,1,0,0,6,0,0,0,7,24,0,0,0,12,0,0,0,25,0,0,120,0,0,0, %T A158757 260,0,0,0,61,720,0,0,0,360,0,0,0,1470,0,0,0,841,0,0,5040,0,0,0,15960, %U A158757 0,0,0,5082,0,0,0,5251,40320,0,0,0,20160,0,0,0,122640,0,0,0,134456,0,0,0,20497 %N A158757 Expansion of e.g.f. exp(t*x)/(1 - x^2/t^2 - t^3* x^3). %D A158757 H. S. M. Coxeter, Regular Polytopes, 3rd ed., Dover, NY, 1973, page 221. %H A158757 G. C. Greubel, <a href="/A158757/b158757.txt">Rows n = 0..50 of the irregular triangle, flattened</a> %F A158757 T(n, k) = coefficients of e.g.f.: exp(t*x)/(1 - x^2/t^2 - t^3* x^3). %F A158757 From _G. C. Greubel_, Dec 05 2021: (Start) %F A158757 T(n, 2*n) = A330044(n). %F A158757 T(n, 0) = A005359(n). %F A158757 T(n, 2) = A005212(n). (End) %e A158757 Irregular triangle begins as: %e A158757 1; %e A158757 0, 0, 1; %e A158757 2, 0, 0, 0, 1; %e A158757 0, 0, 6, 0, 0, 0, 7; %e A158757 24, 0, 0, 0, 12, 0, 0, 0, 25; %e A158757 0, 0, 120, 0, 0, 0, 260, 0, 0, 0, 61; %e A158757 720, 0, 0, 0, 360, 0, 0, 0, 1470, 0, 0, 0, 841; %e A158757 0, 0, 5040, 0, 0, 0, 15960, 0, 0, 0, 5082, 0, 0, 0, 5251; %t A158757 Table[CoefficientList[Expand[t^n*n!*SeriesCoefficient[Series[Exp[t*x]/(1 - x^2/t^2 - t^3*x^3), {x, 0, 20}], n]], t], {n, 0, 10}]//Flatten %o A158757 (Sage) %o A158757 f(x,t) = exp(t*x)/(1 - x^2/t^2 - t^3*x^3) %o A158757 def A158757(n,k): return ( factorial(n)*t^n*( f(x,t) ).series(x, 20).list()[n] ).series(t,2*n+1).list()[k] %o A158757 flatten([[A158757(n,k) for k in (0..2*n)] for n in (0..10)]) # _G. C. Greubel_, Dec 05 2021 %Y A158757 Cf. A005212, A005359, A158706, A330044. %K A158757 nonn,tabf %O A158757 0,5 %A A158757 _Roger L. Bagula_, Mar 25 2009 %E A158757 Edited by _G. C. Greubel_, Dec 01 2021