cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158792 Number of n-colorings of the Shrikhande graph.

This page as a plain text file.
%I A158792 #13 Feb 16 2025 08:33:10
%S A158792 0,0,0,0,240,332400,105480720,7787433360,233556076320,3881511113760,
%T A158792 42569914312800,342908176422240,2176503575487120,11428762115181840,
%U A158792 51423745096804080,203533610650297200,722989464927562560,2341382980699049280,6999973732130650560
%N A158792 Number of n-colorings of the Shrikhande graph.
%C A158792 The Shrikhande graph has 16 vertices and 48 edges.
%H A158792 Alois P. Heinz, <a href="/A158792/b158792.txt">Table of n, a(n) for n = 0..1000</a>
%H A158792 Timme, Marc; van Bussel, Frank; Fliegner, Denny; Stolzenberg, Sebastian (2009) "Counting complex disordered states by efficient pattern matching: chromatic polynomials and Potts partition functions", New J. Phys. 11 023001, doi: <a href="http://dx.doi.org/10.1088/1367-2630/11/2/023001">10.1088/1367-2630/11/2/023001</a>.
%H A158792 Weisstein, Eric W. "<a href="https://mathworld.wolfram.com/ShrikhandeGraph.html">Shrikhande Graph</a>".
%H A158792 Weisstein, Eric W. "<a href="https://mathworld.wolfram.com/ChromaticPolynomial.html">Chromatic Polynomial</a>".
%H A158792 <a href="/index/Rec#order_17">Index entries for linear recurrences with constant coefficients</a>, signature (17, -136, 680, -2380, 6188, -12376, 19448, -24310, 24310, -19448, 12376, -6188, 2380, -680, 136, -17, 1).
%F A158792 a(n) = n^16 -48*n^15 + ... (see Maple program).
%p A158792 a:= n-> n^16 -48*n^15 +1096*n^14 -15812*n^13 +161320*n^12 -1233064*n^11 +7290402*n^10 -33903652*n^9 +124749368*n^8 -362020596*n^7 +818389712*n^6 -1407982096*n^5 +1773274371*n^4 -1531612072*n^3 +803458490*n^2 -190557420*n:
%p A158792 seq(a(n), n=0..20);
%K A158792 nonn,easy
%O A158792 0,5
%A A158792 _Alois P. Heinz_, Mar 26 2009