This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158796 #12 Jun 01 2017 10:18:50 %S A158796 85,3696,79700,263166,283353,434935,678277,950264,1043678,1266169, %T A158796 1321463,1436753,2629623,3568796,3604676,3676738,3713180,5096401, %U A158796 5558697,7162624,9303565,9504536,10988577,12778681,13108392,18730119 %N A158796 Index of first of three successive primes which sum to a cube. %H A158796 Chai Wah Wu, <a href="/A158796/b158796.txt">Table of n, a(n) for n = 1..1000</a> %e A158796 a(1)=85 because prime(85)+prime(86)+prime(87)=439+443+449=11^3=(A076306(1))^3 %e A158796 a(2)=3696 because prime(3696)+prime(3697)+prime(3698)=34603+34607+34613=47^3=(A076306(2))^3. %p A158796 count:= 0: %p A158796 for x from 3 while count < 30 do %p A158796 y:= x^3; %p A158796 r:= floor(y/3); %p A158796 p0:= prevprime(r); p1:= nextprime(p0); p2:= nextprime(p1); %p A158796 while p0 + p1 + p2 > y do %p A158796 p2:= p1; %p A158796 p1:= p0; %p A158796 p0:= prevprime(p0); %p A158796 od: %p A158796 while p0 + p1 + p2 < y do %p A158796 p0:= p1; %p A158796 p1:= p2; %p A158796 p2:= nextprime(p2); %p A158796 od: %p A158796 if p0 + p1 + p2 = y then %p A158796 count:= count+1; %p A158796 A[count]:= numtheory:-pi(p0); %p A158796 fi %p A158796 od: %p A158796 seq(A[i],i=1..count); # _Robert Israel_, Feb 10 2017 %o A158796 (Python) %o A158796 from __future__ import division %o A158796 from sympy import prevprime, nextprime, isprime, primepi %o A158796 A158796_list, i = [], 3 %o A158796 while i < 10**6: %o A158796 n = i**3 %o A158796 m = n//3 %o A158796 pm, nm = prevprime(m), nextprime(m) %o A158796 k = n - pm - nm %o A158796 if isprime(m): %o A158796 if m == k: %o A158796 A158796_list.append(primepi(pm)) %o A158796 else: %o A158796 if nextprime(nm) == k: %o A158796 A158796_list.append(primepi(pm)) %o A158796 elif prevprime(pm) == k: %o A158796 A158796_list.append(primepi(pm)-1) %o A158796 i += 1 # _Chai Wah Wu_, Jun 01 2017 %Y A158796 Cf. A076304, A076306. %K A158796 nonn %O A158796 1,1 %A A158796 _Zak Seidov_, Nov 12 2009