This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158798 #14 Jan 03 2024 08:48:56 %S A158798 1,8,72,584,5192,42568,374856,3099208,27089992,225439304,1959198792, %T A158798 16387314248,141776036936,1190564148808,10264230512712,86460336036424, %U A158798 743371088849992,6276832595181128,53852582281580616,455569868373172808,3902135134394332232 %N A158798 a(n) = a(n-1) + 64*a(n-2), a(0)=1, a(1)=8. %H A158798 G. C. Greubel, <a href="/A158798/b158798.txt">Table of n, a(n) for n = 0..1000</a> %H A158798 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,64). %F A158798 G.f.: (1+7*x)/(1-x-64*x^2). %F A158798 a(n) = (8*i)^n*( ChebyshevU(n, -i/16) - (7*i/8)*ChebyshevU(n-1, -i/16) ). - _G. C. Greubel_, Dec 22 2021 %t A158798 LinearRecurrence[{1,64},{1,8},30] (* _Harvey P. Dale_, Mar 09 2018 *) %o A158798 (Magma) I:=[1,8]; [n le 2 select I[n] else Self(n-1) + 64*Self(n-2): n in [1..41]]; // _G. C. Greubel_, Dec 22 2021 %o A158798 (Sage) [(8*i)^n*( chebyshev_U(n, -i/16) - (7*i/8)*chebyshev_U(n-1, -i/16) ) for n in (0..40)] # _G. C. Greubel_, Dec 22 2021 %Y A158798 Cf. A000045, A026597, A122994, A122995, A122996, A158608, A158797. %K A158798 nonn %O A158798 0,2 %A A158798 _Philippe Deléham_, Mar 27 2009 %E A158798 Corrected and extended by _Harvey P. Dale_, Mar 09 2018