A158804 Composite integers that are a multiple of the sum of their distinct prime factors.
4, 8, 9, 16, 25, 27, 30, 32, 49, 60, 64, 70, 81, 84, 90, 105, 120, 121, 125, 128, 140, 150, 168, 169, 180, 231, 234, 240, 243, 252, 256, 260, 270, 280, 286, 289, 300, 315, 336, 343, 350, 360, 361, 450, 456, 468, 480, 490, 504, 512, 520, 525, 528, 529, 532, 540
Offset: 1
Examples
4 is in the sequence because A008472(4)=2 divides 4. 5 is not in the sequence because it is prime. 6 is not in the sequence because A008472(6)=5 does not divide 6.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Jean-Marie de Koninck, Florian Luca, Integers divisible by the sum of their prime factors, Mathematika 52 (1&2) (2005) 69-77, MR2261843.
Programs
-
Maple
A008472 := proc(n) numtheory[factorset](n) ; add(d,d=%) ; end: isbeta := proc(n) if isprime(n) then false; else if n mod A008472(n) = 0 then true; else false; fi; fi; end: for n from 2 to 1200 do if isbeta(n) then printf("%d,",n); fi; od:
-
Mathematica
Select[Range[2,540],!PrimeQ[#]&&IntegerQ[#/Total[First/@FactorInteger[#]]]&] (* Jayanta Basu, Jun 02 2013 *)
-
PARI
is(n)=my(f=factor(n)[,1]);n%sum(i=1,#f,f[i])==0 \\ Charles R Greathouse IV, Feb 04 2013
Comments